// @(#)root/hist:$Name:  $:$Id: TH1.cxx,v 1.253 2005/09/13 07:54:28 brun Exp $
// Author: Rene Brun   26/12/94

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>

#include "Riostream.h"
#include "TROOT.h"
#include "TH1.h"
#include "TH2.h"
#include "TF2.h"
#include "TF3.h"
#include "TVirtualPad.h"
#include "TRandom.h"
#include "TVirtualFitter.h"
#include "THLimitsFinder.h"
#include "TProfile.h"
#include "TStyle.h"
#include "TVectorF.h"
#include "TVectorD.h"
#include "TBrowser.h"
#include "TObjString.h"

//______________________________________________________________________________
//                     The H I S T O G R A M   Classes
//                     ===============================
//
//     ROOT supports the following histogram types:
//
//      1-D histograms:
//         TH1C : histograms with one byte per channel.   Maximum bin content = 255
//         TH1S : histograms with one short per channel.  Maximum bin content = 65535
//         TH1I : histograms with one int per channel.    Maximum bin content = 2147483647
//         TH1F : histograms with one float per channel.  Maximum precision 7 digits
//         TH1D : histograms with one double per channel. Maximum precision 14 digits
//
//      2-D histograms:
//         TH2C : histograms with one byte per channel.   Maximum bin content = 255
//         TH2S : histograms with one short per channel.  Maximum bin content = 65535
//         TH2I : histograms with one int per channel.    Maximum bin content = 2147483647
//         TH2F : histograms with one float per channel.  Maximum precision 7 digits
//         TH2D : histograms with one double per channel. Maximum precision 14 digits
//
//      3-D histograms:
//         TH3C : histograms with one byte per channel.   Maximum bin content = 255
//         TH3S : histograms with one short per channel.  Maximum bin content = 65535
//         TH3I : histograms with one int per channel.    Maximum bin content = 2147483647
//         TH3F : histograms with one float per channel.  Maximum precision 7 digits
//         TH3D : histograms with one double per channel. Maximum precision 14 digits
//
//      Profile histograms: See classes  TProfile and TProfile2D
//      Profile histograms are used to display the mean value of Y and its RMS
//      for each bin in X. Profile histograms are in many cases an elegant
//      replacement of two-dimensional histograms : the inter-relation of two
//      measured quantities X and Y can always be visualized by a two-dimensional
//      histogram or scatter-plot; If Y is an unknown (but single-valued)
//      approximate function of X, this function is displayed by a profile
//      histogram with much better precision than by a scatter-plot.
//
//   - All histogram classes are derived from the base class TH1
//
//                                TH1
//                                 ^
//                                 |
//                                 |
//                                 |
//         -----------------------------------------------------------
//                |                |       |      |      |     |     |
//                |                |      TH1C   TH1S   TH1I  TH1F  TH1D
//                |                |                                 |
//                |                |                                 |
//                |               TH2                             TProfile
//                |                |
//                |                |
//                |                ----------------------------------
//                |                        |      |      |     |     |
//                |                       TH2C   TH2S   TH2I  TH2F  TH2D
//                |                                                  |
//               TH3                                                 |
//                |                                               TProfile2D
//                |
//                -------------------------------------
//                        |      |      |      |      |
//                       TH3C   TH3S   TH3I   TH3F   TH3D
//
//      The TH*C classes also inherit from the array class TArrayC.
//      The TH*S classes also inherit from the array class TArrayS.
//      The TH*I classes also inherit from the array class TArrayI.
//      The TH*F classes also inherit from the array class TArrayF.
//      The TH*D classes also inherit from the array class TArrayD.
//
//     Creating histograms
//     ===================
//     Histograms are created by invoking one of the constructors, eg
//       TH1F *h1 = new TH1F("h1","h1 title",100,0,4.4);
//       TH2F *h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3);
//     histograms may also be created by:
//       - calling the Clone function, see below
//       - making a projection from a 2-D or 3-D histogram, see below
//       - reading an histogram from a file
//     When an histogram is created, a reference to it is automatically added
//     to the list of in-memory objects for the current file or directory.
//     This default behaviour can be changed by:
//       h->SetDirectory(0);         // for the current histogram h
//       TH1::AddDirectory(kFALSE);  // sets a global switch disabling the reference
//     When the histogram is deleted, the reference to it is removed from
//     the list of objects in memory.
//     When a file is closed, all histograms in memory associated with this file
//     are automatically deleted.
//
//      Fix or variable bin size
//      ========================
//
//     All histogram types support either fix or variable bin sizes.
//     2-D histograms may have fix size bins along X and variable size bins
//     along Y or vice-versa. The functions to fill, manipulate, draw or access
//     histograms are identical in both cases.
//     Each histogram always contains 3 objects TAxis: fXaxis, fYaxis and fZaxis
//     To access the axis parameters, do:
//        TAxis *xaxis = h->GetXaxis(); etc.
//        Double_t binCenter = xaxis->GetBinCenter(bin), etc.
//     See class TAxis for a description of all the access functions.
//     The axis range is always stored internally in double precision.
//
//      Convention for numbering bins
//      =============================
//      For all histogram types: nbins, xlow, xup
//        bin = 0;       underflow bin
//        bin = 1;       first bin with low-edge xlow INCLUDED
//        bin = nbins;   last bin with upper-edge xup EXCLUDED
//        bin = nbins+1; overflow bin
//      In case of 2-D or 3-D histograms, a "global bin" number is defined.
//      For example, assuming a 3-D histogram with binx,biny,binz, the function
//        Int_t gbin = h->GetBin(binx,biny,binz);
//      returns a global/linearized gbin number. This global gbin is useful
//      to access the bin content/error information independently of the dimension.
//      Note that to access the information other than bin content and errors
//      one should use the TAxis object directly with eg:
//         Double_t xcenter = h3->GetZaxis()->GetBinCenter(27);
//       returns the center along z of bin number 27 (not the global bin)
//       in the 3-d histogram h3.
//
//     Alphanumeric Bin Labels
//     =======================
//     By default, an histogram axis is drawn with its numeric bin labels.
//     One can specify alphanumeric labels instead with:
//        1- call TAxis::SetBinLabel(bin,label);
//           This can always be done before or after filling.
//           When the histogram is drawn, bin labels will be automatically drawn.
//           See example in $ROOTSYS/tutorials/labels1.C, labels2.C
//        2- call to a Fill function with one of the arguments being a string, eg
//           hist1->Fill(somename,weigth);
//           hist2->Fill(x,somename,weight);
//           hist2->Fill(somename,y,weight);
//           hist2->Fill(somenamex,somenamey,weight);
//           See example in $ROOTSYS/tutorials/hlabels1.C, hlabels2.C
//        3- via TTree::Draw.
//           see for example $ROOTSYS/tutorials/cern.C
//           tree.Draw("Nation::Division"); where "Nation" and "Division"
//           are two branches of a Tree.
//     When using the options 2 or 3 above, the labels are automatically
//     added to the list (THashList) of labels for a given axis.
//     By default, an axis is drawn with the order of bins corresponding
//     to the filling sequence. It is possible to reorder the axis
//       - alphabetically
//       - by increasing or decreasing values
//     The reordering can be triggered via the TAxis contextMenu by selecting
//     the menu item "LabelsOption" or by calling directly
//        TH1::LabelsOption(option,axis) where
//          -axis may be "X","Y" or "Z"
//          -option may be:
//           option = "a" sort by alphabetic order
//                  = ">" sort by decreasing values
//                  = "<" sort by increasing values
//                  = "h" draw labels horizonthal
//                  = "v" draw labels vertical
//                  = "u" draw labels up (end of label right adjusted)
//                  = "d" draw labels down (start of label left adjusted)
//
//     When using the option 2 above, new labels are added by doubling the current
//     number of bins in case one label does not exist yet.
//     When the Filling is terminated, it is possible to trim the number
//     of bins to match the number of active labels by calling
//           TH1::LabelsDeflate(axis) with axis = "X","Y" or "Z"
//     This operation is automatic when using TTree::Draw.
//     Once bin labels have been created, they become persistent if the histogram
//     is written to a file or when generating the C++ code via SavePrimitive.
//
//     Histograms with automatic bins
//     ==============================
//     When an histogram is created with an axis lower limit greater or equal
//     to its upper limit, the SetBuffer is automatically called with an
//     argument fBufferSize equal to fgBufferSize (default value=1000).
//     fgBufferSize may be reset via the static function TH1::SetDefaultBufferSize.
//     The axis limits will be automatically computed when the buffer will
//     be full or when the function BufferEmpty is called.
//
//     Filling histograms
//     ==================
//     An histogram is typically filled with statements like:
//       h1->Fill(x);
//       h1->Fill(x,w); //fill with weight
//       h2->Fill(x,y)
//       h2->Fill(x,y,w)
//       h3->Fill(x,y,z)
//       h3->Fill(x,y,z,w)
//     or via one of the Fill functions accepting names described above.
//     The Fill functions compute the bin number corresponding to the given
//     x,y or z argument and increment this bin by the given weight.
//     The Fill functions return the bin number for 1-D histograms or global
//     bin number for 2-D and 3-D histograms.
//     If TH1::Sumw2 has been called before filling, the sum of squares of
//     weights is also stored.
//     One can also increment directly a bin number via TH1::AddBinContent
//     or replace the existing content via TH1::SetBinContent.
//     To access the bin content of a given bin, do:
//       Double_t binContent = h->GetBinContent(bin);
//
//     By default, the bin number is computed using the current axis ranges.
//     If the automatic binning option has been set via
//            h->SetBit(TH1::kCanRebin);
//     then, the Fill Function will automatically extend the axis range to
//     accomodate the new value specified in the Fill argument. The method
//     used is to double the bin size until the new value fits in the range,
//     merging bins two by two. This automatic binning options is extensively
//     used by the TTree::Draw function when histogramming Tree variables
//     with an unknown range.
//     This automatic binning option is supported for 1-d, 2-D and 3-D histograms.
//
//     During filling, some statistics parameters are incremented to compute
//     the mean value and Root Mean Square with the maximum precision.
//
//     In case of histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S
//     a check is made that the bin contents do not exceed the maximum positive
//     capacity (127 or 65535). Histograms of all types may have positive
//     or/and negative bin contents.
//
//     Rebinning
//     =========
//     At any time, an histogram can be rebinned via TH1::Rebin. This function
//     returns a new histogram with the rebinned contents.
//     If bin errors were stored, they are recomputed during the rebinning.
//
//     Associated errors
//     =================
//     By default, for each bin, the sum of weights is computed at fill time.
//     One can also call TH1::Sumw2 to force the storage and computation
//     of the sum of the square of weights per bin.
//     If Sumw2 has been called, the error per bin is computed as the
//     sqrt(sum of squares of weights), otherwise the error is set equal
//     to the sqrt(bin content).
//     To return the error for a given bin number, do:
//        Double_t error = h->GetBinError(bin);
//
//     Associated functions
//     ====================
//     One or more object (typically a TF1*) can be added to the list
//     of functions (fFunctions) associated to each histogram.
//     When TH1::Fit is invoked, the fitted function is added to this list.
//     Given an histogram h, one can retrieve an associated function
//     with:  TF1 *myfunc = h->GetFunction("myfunc");
//
//     Operations on histograms
//     ========================
//
//     Many types of operations are supported on histograms or between histograms
//     - Addition of an histogram to the current histogram
//     - Additions of two histograms with coefficients and storage into the current
//       histogram
//     - Multiplications and Divisions are supported in the same way as additions.
//     - The Add, Divide and Multiply functions also exist to add,divide or multiply
//       an histogram by a function.
//     If an histogram has associated error bars (TH1::Sumw2 has been called),
//     the resulting error bars are also computed assuming independent histograms.
//     In case of divisions, Binomial errors are also supported.
//
//
//     Fitting histograms
//     ==================
//
//     Histograms (1-D,2-D,3-D and Profiles) can be fitted with a user
//     specified function via TH1::Fit. When an histogram is fitted, the
//     resulting function with its parameters is added to the list of functions
//     of this histogram. If the histogram is made persistent, the list of
//     associated functions is also persistent. Given a pointer (see above)
//     to an associated function myfunc, one can retrieve the function/fit
//     parameters with calls such as:
//       Double_t chi2 = myfunc->GetChisquare();
//       Double_t par0 = myfunc->GetParameter(0); //value of 1st parameter
//       Double_t err0 = myfunc->GetParError(0);  //error on first parameter
//
//
//     Projections of histograms
//     ========================
//     One can:
//      - make a 1-D projection of a 2-D histogram or Profile
//        see functions TH2::ProjectionX,Y, TH2::ProfileX,Y, TProfile::ProjectionX
//      - make a 1-D, 2-D or profile out of a 3-D histogram
//        see functions TH3::ProjectionZ, TH3::Project3D.
//
//     One can fit these projections via:
//      TH2::FitSlicesX,Y, TH3::FitSlicesZ.
//
//     Random Numbers and histograms
//     =============================
//     TH1::FillRandom can be used to randomly fill an histogram using
//                    the contents of an existing TF1 function or another
//                    TH1 histogram (for all dimensions).
//     For example the following two statements create and fill an histogram
//     10000 times with a default gaussian distribution of mean 0 and sigma 1:
//       TH1F h1("h1","histo from a gaussian",100,-3,3);
//       h1.FillRandom("gaus",10000);
//     TH1::GetRandom can be used to return a random number distributed
//                    according the contents of an histogram.
//
//     Making a copy of an histogram
//     =============================
//     Like for any other ROOT object derived from TObject, one can use
//     the Clone() function. This makes an identical copy of the original
//     histogram including all associated errors and functions, e.g.:
//       TH1F *hnew = (TH1F*)h->Clone("hnew");
//
//     Normalizing histograms
//     ======================
//     One can scale an histogram such that the bins integral is equal to
//     the normalization parameter via TH1::Scale(Double_t norm).
//
//     Drawing histograms
//     ==================
//     Histograms are drawn via the THistPainter class. Each histogram has
//     a pointer to its own painter (to be usable in a multithreaded program).
//     Many drawing options are supported.
//     See THistPainter::Paint() for more details.
//     The same histogram can be drawn with different options in different pads.
//     When an histogram drawn in a pad is deleted, the histogram is
//     automatically removed from the pad or pads where it was drawn.
//     If an histogram is drawn in a pad, then filled again, the new status
//     of the histogram will be automatically shown in the pad next time
//     the pad is updated. One does not need to redraw the histogram.
//     To draw the current version of an histogram in a pad, one can use
//        h->DrawCopy();
//     This makes a clone (see Clone below) of the histogram. Once the clone
//     is drawn, the original histogram may be modified or deleted without
//     affecting the aspect of the clone.
//
//     One can use TH1::SetMaximum() and TH1::SetMinimum() to force a particular
//     value for the maximum or the minimum scale on the plot.
//
//     TH1::UseCurrentStyle() can be used to change all histogram graphics
//     attributes to correspond to the current selected style.
//     This function must be called for each histogram.
//     In case one reads and draws many histograms from a file, one can force
//     the histograms to inherit automatically the current graphics style
//     by calling before gROOT->ForceStyle().
//
//
//     Setting Drawing histogram contour levels (2-D hists only)
//     =========================================================
//     By default contours are automatically generated at equidistant
//     intervals. A default value of 20 levels is used. This can be modified
//     via TH1::SetContour() or TH1::SetContourLevel().
//     the contours level info is used by the drawing options "cont", "surf",
//     and "lego".
//
//     Setting histogram graphics attributes
//     =====================================
//     The histogram classes inherit from the attribute classes:
//       TAttLine, TAttFill, TAttMarker and TAttText.
//     See the member functions of these classes for the list of options.
//
//     Giving titles to the X, Y and Z axis
//     ====================================
//       h->GetXaxis()->SetTitle("X axis title");
//       h->GetYaxis()->SetTitle("Y axis title");
//     The histogram title and the axis titles can be any TLatex string.
//     The titles are part of the persistent histogram.
//     It is also possible to specify the histogram title and the axis
//     titles at creation time. These titles can be given in the "title"
//     parameter. They must be separated by ";":
//        TH1F* h=new TH1F("h","Histogram title;X Axis;Y Axis;Z Axis",100,0,1);
//     Any title can be omitted:
//        TH1F* h=new TH1F("h","Histogram title;;Y Axis",100,0,1);
//        TH1F* h=new TH1F("h",";;Y Axis",100,0,1);
//     The method SetTitle has the same syntax:
//        h->SetTitle("Histogram title;An other X title Axis");
//
//     Saving/Reading histograms to/from a ROOT file
//     =============================================
//     The following statements create a ROOT file and store an histogram
//     on the file. Because TH1 derives from TNamed, the key identifier on
//     the file is the histogram name:
//        TFile f("histos.root","new");
//        TH1F h1("hgaus","histo from a gaussian",100,-3,3);
//        h1.FillRandom("gaus",10000);
//        h1->Write();
//     To Read this histogram in another Root session, do:
//        TFile f("histos.root");
//        TH1F *h = (TH1F*)f.Get("hgaus");
//     One can save all histograms in memory to the file by:
//     file->Write();
//
//     Miscelaneous operations
//     =======================
//
//      TH1::KolmogorovTest(): statistical test of compatibility in shape
//                             between two histograms
//      TH1::Smooth() smooths the bin contents of a 1-d histogram
//      TH1::Integral() returns the integral of bin contents in a given bin range
//      TH1::GetMean(int axis) returns the mean value along axis
//      TH1::GetRMS(int axis)  returns the sigma distribution along axis
//      TH1::GetEntries() returns the number of entries
//      TH1::Reset() resets the bin contents and errors of an histogram
//
//
/* */ //



TF1 *gF1=0;  //left for back compatibility (use TVirtualFitter::GetUserFunc instead)
const Int_t kNstat = 11;

Int_t  TH1::fgBufferSize   = 1000;
Bool_t TH1::fgAddDirectory = kTRUE;
Bool_t TH1::fgStatOverflows= kFALSE;

extern void H1InitGaus();
extern void H1InitExpo();
extern void H1InitPolynom();
extern void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a);
extern void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail);
extern void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b);

ClassImp(TH1)

//______________________________________________________________________________
TH1::TH1(): TNamed(), TAttLine(), TAttFill(), TAttMarker()
{
//   -*-*-*-*-*-*-*-*-*Histogram default constructor*-*-*-*-*-*-*-*-*-*-*-*-*
//                     =============================
   fDirectory     = 0;
   fFunctions     = new TList;
   fNcells        = 0;
   fIntegral      = 0;
   fPainter       = 0;
   fEntries       = 0;
   fNormFactor    = 0;
   fTsumw         = fTsumw2=fTsumwx=fTsumwx2=0;
   fMaximum       = -1111;
   fMinimum       = -1111;
   fBufferSize    = 0;
   fBuffer        = 0;
   fXaxis.SetName("xaxis");
   fYaxis.SetName("yaxis");
   fZaxis.SetName("zaxis");
   fXaxis.SetParent(this);
   fYaxis.SetParent(this);
   fZaxis.SetParent(this);
   UseCurrentStyle();
}

//______________________________________________________________________________
TH1::~TH1()
{
//   -*-*-*-*-*-*-*-*-*Histogram default destructor*-*-*-*-*-*-*-*-*-*-*-*-*-*
//                     ============================

   //TH1 *junk = 0;
   //junk->SetLineColor(0);
   if (!TestBit(kNotDeleted)) return;
   if (fIntegral) {delete [] fIntegral; fIntegral = 0;}
   if (fBuffer)   {delete [] fBuffer;   fBuffer   = 0;}
   if (fFunctions) {
      fFunctions->SetBit(kInvalidObject);
      TObject *obj;
      //special logic to support the case where the same object is
      //added multiple times in fFunctions.
      //This case happens when the same object is added with different
      //drawing modes
      //In the loop below we must be careful with objects (eg TCutG) that may
      // have been added to the list of functions of several histograms
      //and may have been already deleted.
      while ((obj  = fFunctions->First())) {
         while(fFunctions->Remove(obj));
          if (!obj->TestBit(kNotDeleted)) break;
          delete obj;
      }
      delete fFunctions;
   }
   if (fDirectory) {
      if (!fDirectory->TestBit(TDirectory::kCloseDirectory))
         fDirectory->GetList()->Remove(this);
   }
   fFunctions = 0;
   fDirectory = 0;
   delete fPainter;
}

//______________________________________________________________________________
TH1::TH1(const char *name,const char *title,Int_t nbins,Axis_t xlow,Axis_t xup)
    :TNamed(name,title), TAttLine(), TAttFill(), TAttMarker()
{
//   -*-*-*-*-*-*-*Normal constructor for fix bin size histograms*-*-*-*-*-*-*
//                 ==============================================
//
//     Creates the main histogram structure:
//        name   : name of histogram (avoid blanks)
//        title  : histogram title
//                 if title is of the form "stringt;stringx;stringy;stringz"
//                 the histogram title is set to stringt,
//                 the x axis title to stringy, the y axis title to stringy,etc
//        nbins  : number of bins
//        xlow   : low edge of first bin
//        xup    : upper edge of last bin (not included in last bin)
//
//      When an histogram is created, it is automatically added to the list
//      of special objects in the current directory.
//      To find the pointer to this histogram in the current directory
//      by its name, do:
//      TH1F *h1 = (TH1F*)gDirectory->FindObject(name);
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

   Build();
   if (nbins <= 0) nbins = 1;
   fXaxis.Set(nbins,xlow,xup);
   fNcells = fXaxis.GetNbins()+2;
}

//______________________________________________________________________________
TH1::TH1(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
    :TNamed(name,title), TAttLine(), TAttFill(), TAttMarker()
{
//   -*-*-*-*-*Normal constructor for variable bin size histograms*-*-*-*-*-*-*
//             ===================================================
//
//  Creates the main histogram structure:
//     name   : name of histogram (avoid blanks)
//     title  : histogram title
//              if title is of the form "stringt;stringx;stringy;stringz"
//              the histogram title is set to stringt,
//              the x axis title to stringy, the y axis title to stringy,etc
//     nbins  : number of bins
//     xbins  : array of low-edges for each bin
//              This is an array of size nbins+1
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
   Build();
   if (nbins <= 0) nbins = 1;
   if (xbins) fXaxis.Set(nbins,xbins);
   else       fXaxis.Set(nbins,0,1);
   fNcells = fXaxis.GetNbins()+2;
}

//______________________________________________________________________________
TH1::TH1(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
    :TNamed(name,title), TAttLine(), TAttFill(), TAttMarker()
{
//   -*-*-*-*-*Normal constructor for variable bin size histograms*-*-*-*-*-*-*
//             ===================================================
//
//  Creates the main histogram structure:
//     name   : name of histogram (avoid blanks)
//     title  : histogram title
//              if title is of the form "stringt;stringx;stringy;stringz"
//              the histogram title is set to stringt,
//              the x axis title to stringy, the y axis title to stringy,etc
//     nbins  : number of bins
//     xbins  : array of low-edges for each bin
//              This is an array of size nbins+1
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
   Build();
   if (nbins <= 0) nbins = 1;
   if (xbins) fXaxis.Set(nbins,xbins);
   else       fXaxis.Set(nbins,0,1);
   fNcells = fXaxis.GetNbins()+2;
}

//______________________________________________________________________________
TH1::TH1(const TH1 &h) : TNamed(), TAttLine(), TAttFill(), TAttMarker()
{
   // Copy constructor.
   // The list of functions is not copied. (Use Clone if needed)
   Copy((TObject&)h);
}

//______________________________________________________________________________
Bool_t TH1::AddDirectoryStatus()
{
   //static function: cannot be inlined on Windows/NT
   return fgAddDirectory;
}

//______________________________________________________________________________
void TH1::Browse(TBrowser *b)
{
    Draw(b ? b->GetDrawOption() : "");
    gPad->Update();
}


//______________________________________________________________________________
void TH1::Build()
{
//   -*-*-*-*-*-*-*-*Creates histogram basic data structure*-*-*-*-*-*-*-*-*-*
//                   ======================================

   fDirectory     = 0;
   fPainter       = 0;
   fIntegral      = 0;
   fEntries       = 0;
   fNormFactor    = 0;
   fTsumw         = fTsumw2=fTsumwx=fTsumwx2=0;
   fMaximum       = -1111;
   fMinimum       = -1111;
   fBufferSize    = 0;
   fBuffer        = 0;
   fXaxis.SetName("xaxis");
   fYaxis.SetName("yaxis");
   fZaxis.SetName("zaxis");
   fYaxis.Set(1,0.,1.);
   fZaxis.Set(1,0.,1.);
   fXaxis.SetParent(this);
   fYaxis.SetParent(this);
   fZaxis.SetParent(this);

   SetTitle(fTitle.Data());

   fFunctions = new TList;

   UseCurrentStyle();

   if (fgAddDirectory && gDirectory) {
      if (!gDirectory->GetList()) {
         Warning("Build","Current directory is not a valid directory");
         return;
      }
      TH1 *hold = (TH1*)gDirectory->GetList()->FindObject(GetName());
      if (hold) {
         Warning("Build","Replacing existing histogram: %s (Potential memory leak).",GetName());
         gDirectory->GetList()->Remove(hold);
         hold->SetDirectory(0);
         //  delete hold;
      }
      gDirectory->Append(this);
      fDirectory = gDirectory;
   }
}

//______________________________________________________________________________
void TH1::Add(TF1 *f1, Double_t c1, Option_t *option)
{
// Performs the operation: this = this + c1*f1
// if errors are defined (see TH1::Sumw2), errors are also recalculated.
//
// By default, the function is computed at the centre of the bin.
// if option "I" is specified (1-d histogram only), the integral of the
// function in each bin is used instead of the value of the function at
// the centre of the bin.
// Only bins inside the function range are recomputed.
// IMPORTANT NOTE: If you intend to use the errors of this histogram later
// you should call Sumw2 before making this operation.
// This is particularly important if you fit the histogram after TH1::Add

   if (!f1) {
      Error("Add","Attempt to add a non-existing function");
      return;
   }

   TString opt = option;
   opt.ToLower();
   Bool_t integral = kFALSE;
   if (opt.Contains("i") && fDimension ==1) integral = kTRUE;

   Int_t nbinsx = GetNbinsX();
   Int_t nbinsy = GetNbinsY();
   Int_t nbinsz = GetNbinsZ();
   if (fDimension < 2) nbinsy = -1;
   if (fDimension < 3) nbinsz = -1;

//   - Add statistics
   Stat_t s1[10];
   Int_t i;
   for (i=0;i<10;i++) {s1[i] = 0;}
   PutStats(s1);
   SetMinimum();
   SetMaximum();

//   - Loop on bins (including underflows/overflows)
   Int_t bin, binx, biny, binz;
   Double_t cu=0;
   Double_t xx[3];
   Double_t *params = 0;
   f1->InitArgs(xx,params);
   for (binz=0;binz<=nbinsz+1;binz++) {
      xx[2] = fZaxis.GetBinCenter(binz);
      for (biny=0;biny<=nbinsy+1;biny++) {
         xx[1] = fYaxis.GetBinCenter(biny);
         for (binx=0;binx<=nbinsx+1;binx++) {
            xx[0] = fXaxis.GetBinCenter(binx);
            if (!f1->IsInside(xx)) continue;
            TF1::RejectPoint(kFALSE);
            bin = binx +(nbinsx+2)*(biny + (nbinsy+2)*binz);
            if (integral) {
               xx[0] = fXaxis.GetBinLowEdge(binx);
               cu  = c1*f1->EvalPar(xx);
               cu += c1*f1->Integral(fXaxis.GetBinLowEdge(binx),fXaxis.GetBinUpEdge(binx))*fXaxis.GetBinWidth(binx);
            } else {
               cu  = c1*f1->EvalPar(xx);
            }
            if (TF1::RejectedPoint()) continue;
            Double_t error1 = GetBinError(bin);
            AddBinContent(bin,cu);
            if (fSumw2.fN) {
               //errors are unchanged: error on f1 assumed 0
               fSumw2.fArray[bin] = error1*error1;
            }
         }
      }
   }
}

//______________________________________________________________________________
void TH1::Add(const TH1 *h1, Double_t c1)
{
// Performs the operation: this = this + c1*h1
// if errors are defined (see TH1::Sumw2), errors are also recalculated.
// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
// if not already set.
//
// IMPORTANT NOTE1: If you intend to use the errors of this histogram later
// you should call Sumw2 before making this operation.
// This is particularly important if you fit the histogram after TH1::Add
//
// IMPORTANT NOTE2: if h1 has a normalisation factor, the normalisation factor
// is used , ie  this = this + c1*factor*h1
// Use the other TH1::Add function if you do not want this feature

   if (!h1) {
      Error("Add","Attempt to add a non-existing histogram");
      return;
   }

   Int_t nbinsx = GetNbinsX();
   Int_t nbinsy = GetNbinsY();
   Int_t nbinsz = GetNbinsZ();
//   - Check histogram compatibility
   if (nbinsx != h1->GetNbinsX() || nbinsy != h1->GetNbinsY() || nbinsz != h1->GetNbinsZ()) {
      Error("Add","Attempt to add histograms with different number of bins");
      return;
   }
//   - Issue a Warning if histogram limits are different
   if (fXaxis.GetXmin() != h1->fXaxis.GetXmin() ||
       fXaxis.GetXmax() != h1->fXaxis.GetXmax() ||
       fYaxis.GetXmin() != h1->fYaxis.GetXmin() ||
       fYaxis.GetXmax() != h1->fYaxis.GetXmax() ||
       fZaxis.GetXmin() != h1->fZaxis.GetXmin() ||
       fZaxis.GetXmax() != h1->fZaxis.GetXmax()) {
       Warning("Add","Attempt to add histograms with different axis limits");
   }
   if (fDimension < 2) nbinsy = -1;
   if (fDimension < 3) nbinsz = -1;

//    Create Sumw2 if h1 has Sumw2 set
   if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();

//   - Add statistics
   fEntries += c1*h1->GetEntries();
   Stat_t s1[kNstat], s2[kNstat];
   Int_t i;
   for (i=0;i<kNstat;i++) {s1[i] = s2[i] = 0;}
   GetStats(s1);
   h1->GetStats(s2);
   for (i=0;i<kNstat;i++) {
      if (i == 1) s1[i] += c1*c1*s2[i];
      else        s1[i] += c1*s2[i];
   }
   PutStats(s1);

   SetMinimum();
   SetMaximum();

//   - Loop on bins (including underflows/overflows)
   Int_t bin, binx, biny, binz;
   Double_t cu;
   Double_t factor =1;
   if (h1->GetNormFactor() != 0) factor = h1->GetNormFactor()/h1->GetSumOfWeights();;
   for (binz=0;binz<=nbinsz+1;binz++) {
      for (biny=0;biny<=nbinsy+1;biny++) {
         for (binx=0;binx<=nbinsx+1;binx++) {
            bin = binx +(nbinsx+2)*(biny + (nbinsy+2)*binz);
            cu  = c1*factor*h1->GetBinContent(bin);
            AddBinContent(bin,cu);
            if (fSumw2.fN) {
               Double_t error1 = factor*h1->GetBinError(bin);
               fSumw2.fArray[bin] += c1*c1*error1*error1;
            }
         }
      }
   }
}

//______________________________________________________________________________
void TH1::Add(const TH1 *h1, const TH1 *h2, Double_t c1, Double_t c2)
{
//   -*-*-*Replace contents of this histogram by the addition of h1 and h2*-*-*
//         ===============================================================
//
//   this = c1*h1 + c2*h2
//   if errors are defined (see TH1::Sumw2), errors are also recalculated
//   Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
//   if not already set.
//
// IMPORTANT NOTE: If you intend to use the errors of this histogram later
// you should call Sumw2 before making this operation.
// This is particularly important if you fit the histogram after TH1::Add

   if (!h1 || !h2) {
      Error("Add","Attempt to add a non-existing histogram");
      return;
   }

   Int_t nbinsx = GetNbinsX();
   Int_t nbinsy = GetNbinsY();
   Int_t nbinsz = GetNbinsZ();
//   - Check histogram compatibility
   if (nbinsx != h1->GetNbinsX() || nbinsy != h1->GetNbinsY() || nbinsz != h1->GetNbinsZ()
    || nbinsx != h2->GetNbinsX() || nbinsy != h2->GetNbinsY() || nbinsz != h2->GetNbinsZ()) {
      Error("Add","Attempt to add histograms with different number of bins");
      return;
   }
//   - Issue a Warning if histogram limits are different
   if (fXaxis.GetXmin() != h1->fXaxis.GetXmin() ||
       fXaxis.GetXmax() != h1->fXaxis.GetXmax() ||
       fYaxis.GetXmin() != h1->fYaxis.GetXmin() ||
       fYaxis.GetXmax() != h1->fYaxis.GetXmax() ||
       fZaxis.GetXmin() != h1->fZaxis.GetXmin() ||
       fZaxis.GetXmax() != h1->fZaxis.GetXmax()) {
       Warning("Add","Attempt to add histograms with different axis limits");
   }
   if (fXaxis.GetXmin() != h2->fXaxis.GetXmin() ||
       fXaxis.GetXmax() != h2->fXaxis.GetXmax() ||
       fYaxis.GetXmin() != h2->fYaxis.GetXmin() ||
       fYaxis.GetXmax() != h2->fYaxis.GetXmax() ||
       fZaxis.GetXmin() != h2->fZaxis.GetXmin() ||
       fZaxis.GetXmax() != h2->fZaxis.GetXmax()) {
       Warning("Add","Attempt to add histograms::Add with different axis limits");
   }
   if (fDimension < 2) nbinsy = -1;
   if (fDimension < 3) nbinsz = -1;
   if (fDimension < 3) nbinsz = -1;

//    Create Sumw2 if h1 or h2 have Sumw2 set
   if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();

//   - Add statistics
   Double_t nEntries = c1*h1->GetEntries() + c2*h2->GetEntries();
   Stat_t s1[kNstat], s2[kNstat], s3[kNstat];
   Int_t i;
   for (i=0;i<kNstat;i++) {s1[i] = s2[i] = s3[i] = 0;}
   h1->GetStats(s1);
   h2->GetStats(s2);
   for (i=0;i<kNstat;i++) {
      if (i == 1) s3[i] = c1*c1*s1[i] + c2*c2*s2[i];
      else        s3[i] = c1*s1[i]    + c2*s2[i];
   }
   PutStats(s3);

   SetMinimum();
   SetMaximum();

//    Reset the kCanRebin option. Otherwise SetBinContent on the overflow bin
//    would resize the axis limits!
   ResetBit(kCanRebin);


//   - Loop on bins (including underflows/overflows)
   Int_t bin, binx, biny, binz;
   Double_t cu;
   for (binz=0;binz<=nbinsz+1;binz++) {
      for (biny=0;biny<=nbinsy+1;biny++) {
         for (binx=0;binx<=nbinsx+1;binx++) {
            bin = binx +(nbinsx+2)*(biny + (nbinsy+2)*binz);
            cu  = c1*h1->GetBinContent(bin)+ c2*h2->GetBinContent(bin);
            SetBinContent(bin,cu);
            if (fSumw2.fN) {
               Double_t error1 = h1->GetBinError(bin);
               Double_t error2 = h2->GetBinError(bin);
               fSumw2.fArray[bin] = c1*c1*error1*error1 + c2*c2*error2*error2;
            }
         }
      }
   }
   SetEntries(nEntries);
}


//______________________________________________________________________________
void TH1::AddBinContent(Int_t)
{
//   -*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//                   ==========================
   AbstractMethod("AddBinContent");
}

//______________________________________________________________________________
void TH1::AddBinContent(Int_t, Stat_t)
{
//   -*-*-*-*-*-*-*-*Increment bin content by a weight w*-*-*-*-*-*-*-*-*-*-*
//                   ===================================
   AbstractMethod("AddBinContent");
}

//______________________________________________________________________________
void TH1::AddDirectory(Bool_t add)
{
// Sets the flag controlling the automatic add of histograms in memory
//
// By default (fAddDirectory = kTRUE), histograms are automatically added
// to the list of objects in memory.
// Note that one histogram can be removed from its support directory
// by calling h->SetDirectory(0) or h->SetDirectory(dir) to add it
// to the list of objects in the directory dir.
//
//  NOTE that this is a static function. To call it, use;
//     TH1::AddDirectory

   fgAddDirectory = add;
}


//______________________________________________________________________________
Int_t TH1::BufferEmpty(Int_t action)
{
// Fill histogram with all entries in the buffer.
// action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint)
// action =  0 histogram is filled from the buffer
// action =  1 histogram is filled and buffer is deleted
//             The buffer is automatically deleted when the number of entries
//             in the buffer is greater than the number of entries in the histogram

   // do we need to compute the bin size?
   if (!fBuffer) return 0;
   Int_t nbentries = (Int_t)fBuffer[0];
   if (!nbentries) return 0;
   Double_t *buffer = fBuffer;
   if (nbentries < 0) {
      if (action == 0) return 0;
      nbentries  = -nbentries;
      fBuffer=0;
      Reset();
      fBuffer = buffer;
   }
   if (TestBit(kCanRebin) || (fXaxis.GetXmax() <= fXaxis.GetXmin())) {
      //find min, max of entries in buffer
      Double_t xmin = fBuffer[2];
      Double_t xmax = xmin;
      for (Int_t i=1;i<nbentries;i++) {
         Double_t x = fBuffer[2*i+2];
         if (x < xmin) xmin = x;
         if (x > xmax) xmax = x;
      }
      if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
         THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this,xmin,xmax);
      } else {
         fBuffer = 0;
         Int_t keep = fBufferSize; fBufferSize = 0;
         if (xmin <  fXaxis.GetXmin()) RebinAxis(xmin,"X");
         if (xmax >= fXaxis.GetXmax()) RebinAxis(xmax,"X");
         fBuffer = buffer;
         fBufferSize = keep;
      }
   }

   FillN(nbentries,&fBuffer[2],&fBuffer[1],2);

   if (action > 0) { delete [] fBuffer; fBuffer = 0; fBufferSize = 0;}
   else {
      if (nbentries == (Int_t)fEntries) fBuffer[0] = -nbentries;
      else                              fBuffer[0] = 0;
   }
   return nbentries;
}

//______________________________________________________________________________
Int_t TH1::BufferFill(Axis_t x, Stat_t w)
{
// accumulate arguments in buffer. When buffer is full, empty the buffer
// fBuffer[0] = number of entries in buffer
// fBuffer[1] = w of first entry
// fBuffer[2] = x of first entry

   if (!fBuffer) return -2;
   Int_t nbentries = (Int_t)fBuffer[0];
   if (nbentries < 0) {
      nbentries  = -nbentries;
      fBuffer[0] =  nbentries;
      if (fEntries > 0) {
         Double_t *buffer = fBuffer; fBuffer=0;
         Reset();
         fBuffer = buffer;
      }
   }
   if (2*nbentries+2 >= fBufferSize) {
      BufferEmpty(1);
      return Fill(x,w);
   }
   fBuffer[2*nbentries+1] = w;
   fBuffer[2*nbentries+2] = x;
   fBuffer[0] += 1;
   return -2;
}

//______________________________________________________________________________
Double_t TH1::Chi2Test(const TH1 *h, Option_t *option, Int_t constraint) const
{
  //The Chi2 (Pearson's) test for differences between h and this histogram.
  //a small value of prob indicates a significant difference between the distributions
  //
  //if the data was collected in such a way that the number of entries
  //in the first histogram is necessarily equal to the number of entries
  //in the second, the parameter _constraint_ must be made 1. Default is 0.
  //any additional constraints on the data lower the number of degrees of freedom
  //(i.e. increase constraint to more positive values) in accordance with
  //their number
  //
  ///options:
  //  "O" : overflows included
  //  "U" : underflows included
  //  by default underflows and overflows are not included
  //
  //  "P"        : print information about number of degrees of freedom and the value of chi2
  //  "Chi2"     : the function returns the Chisquare instead of the probability
  //  "Chi2/ndf" : the function returns the Chi2/ndf
  //  if none of the options "Chi2" or "Chi2/ndf" is specified, the function returns
  //  the Pearson test, ie probability.
  //
  // algorithm taken from "Numerical Recipes in C++"
  // implementation by Anna Kreshuk
  //
  //  A good description of the Chi2test can be seen at:
  //     http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm
  //  See also TH1::KolmogorovTest (including NOTE2)
  
  Int_t i, i_start, i_end;

  TString opt = option;
  opt.ToUpper();

  TAxis *axis1 = this->GetXaxis();
  TAxis *axis2 = h->GetXaxis();

  Int_t nbins1 = axis1->GetNbins();
  Int_t nbins2 = axis2->GetNbins();

  //check dimensions
  if (this->GetDimension()!=1 || h->GetDimension()!=1){
     Error("Chi2Test","for 1-d only");
     return 0;
  }

  //check number of channels
  if (nbins1 != nbins2){
     Error("Chi2Test","different number of channels");
     return 0;
  }

  //see options

  i_start = 1;
  i_end = nbins1;
  Int_t ndf = nbins1-constraint;

  if(opt.Contains("O")) {
     i_end = nbins1+1;
     ndf++;
  }
  if(opt.Contains("U")) {
     i_start = 0;
     ndf++;
  }

  //Compute the normalisation factor
  Double_t sum1=0, sum2=0;
  for (i=i_start; i<=i_end; i++){
     sum1 += this->GetBinContent(i);
     sum2 += h->GetBinContent(i);
  }
  //check that the histograms are not empty
  if (sum1 == 0 || sum2 == 0){
     Error("Chi2Test","one of the histograms is empty");
     return 0;
  }

  Double_t chsq = 0;
  Double_t bin1, bin2, err1, err2, temp;
  for (i=i_start; i<=i_end; i++){
     bin1 = this->GetBinContent(i)/sum1;
     bin2 = h->GetBinContent(i)/sum2;
     if (bin1 ==0 && bin2==0){
        --ndf; //no data means one less degree of freedom
     } else {

        temp  = bin1-bin2;        
        err1=this->GetBinError(i);
        err2=h->GetBinError(i);
        if (err1 == 0 && err2 == 0){
          Error("Chi2Test", "bins with non-zero content and zero error");
          return 0;
        }
        err1*=err1;
        err2*=err2;
        err1/=sum1*sum1;
        err2/=sum2*sum2;
        chsq+=temp*temp/(err1+err2);
     }
  }

  Double_t prob = TMath::Prob(0.5*chsq, Int_t(0.5*ndf));

  if (opt.Contains("P")){
     Printf("Chi2 = %f, Prob = %g, NDF = %d\n", chsq,prob,ndf);
  }
  if (opt.Contains("CHI2/NDF")){
     if (ndf == 0) return 0;
     return chsq/ndf;
  }
  if (opt.Contains("CHI2")){
     return chsq;
  }

  return prob;
}

//______________________________________________________________________________
Double_t TH1::ComputeIntegral()
{
//  Compute integral (cumulative sum of bins)
//  The result stored in fIntegral is used by the GetRandom functions.
//  This function is automatically called by GetRandom when the fIntegral
//  array does not exist or when the number of entries in the histogram
//  has changed since the previous call to GetRandom.
//  The resulting integral is normalized to 1

   Int_t bin, binx, biny, binz, ibin;

// delete previously computed integral (if any)
   if (fIntegral) delete [] fIntegral;

//   - Allocate space to store the integral and compute integral
   Int_t nbinsx = GetNbinsX();
   Int_t nbinsy = GetNbinsY();
   Int_t nbinsz = GetNbinsZ();
   Int_t nxy    = nbinsx*nbinsy;
   Int_t nbins  = nxy*nbinsz;

   fIntegral = new Double_t[nbins+2];
   ibin = 0;
   fIntegral[ibin] = 0;
   for (binz=1;binz<=nbinsz;binz++) {
      for (biny=1;biny<=nbinsy;biny++) {
         for (binx=1;binx<=nbinsx;binx++) {
            ibin++;
            bin  = GetBin(binx, biny, binz);
            fIntegral[ibin] = fIntegral[ibin-1] + GetBinContent(bin);
         }
      }
   }

//   - Normalize integral to 1
   if (fIntegral[nbins] == 0 ) {
      Error("ComputeIntegral", "Integral = zero"); return 0;
   }
   for (bin=1;bin<=nbins;bin++)  fIntegral[bin] /= fIntegral[nbins];
   fIntegral[nbins+1] = fEntries;
   return fIntegral[nbins];
}

//______________________________________________________________________________
Double_t *TH1::GetIntegral()
{
//  Return a pointer to the array of bins integral.
//  if the pointer fIntegral is null, TH1::ComputeIntegral is called

   if (fIntegral) ComputeIntegral();
   return fIntegral;
}

//______________________________________________________________________________
void TH1::Copy(TObject &obj) const
{
//   -*-*-*-*-*Copy this histogram structure to newth1*-*-*-*-*-*-*-*-*-*-*-*
//             =======================================
//
// Note that this function does not copy the list of associated functions.
// Use TObJect::Clone to make a full copy of an histogram.

   if (((TH1&)obj).fDirectory) {
      // We are likely to change the hash value of this object
      // with TNamed::Copy, to keep things correct, we need to
      // clean up its existing entries.
      ((TH1&)obj).fDirectory->GetList()->Remove(&obj);
      ((TH1&)obj).fDirectory = 0;
   }
   TNamed::Copy(obj);
   ((TH1&)obj).fDimension = fDimension;
   ((TH1&)obj).fNormFactor= fNormFactor;
   ((TH1&)obj).fEntries   = fEntries;
   ((TH1&)obj).fNcells    = fNcells;
   ((TH1&)obj).fBarOffset = fBarOffset;
   ((TH1&)obj).fBarWidth  = fBarWidth;
   ((TH1&)obj).fTsumw     = fTsumw;
   ((TH1&)obj).fTsumw2    = fTsumw2;
   ((TH1&)obj).fTsumwx    = fTsumwx;
   ((TH1&)obj).fTsumwx2   = fTsumwx2;
   ((TH1&)obj).fMaximum   = fMaximum;
   ((TH1&)obj).fMinimum   = fMinimum;
   ((TH1&)obj).fOption    = fOption;
   ((TH1&)obj).fBuffer    = 0;
   ((TH1&)obj).fBufferSize= fBufferSize;
   if (fBuffer) {
      Double_t *buf = new Double_t[fBufferSize];
      for (Int_t i=0;i<fBufferSize;i++) buf[i] = fBuffer[i];
      ((TH1&)obj).fBuffer    = buf;
   }

   TAttLine::Copy(((TH1&)obj));
   TAttFill::Copy(((TH1&)obj));
   TAttMarker::Copy(((TH1&)obj));
   fXaxis.Copy(((TH1&)obj).fXaxis);
   fYaxis.Copy(((TH1&)obj).fYaxis);
   fZaxis.Copy(((TH1&)obj).fZaxis);
   ((TH1&)obj).fXaxis.SetParent(&obj);
   ((TH1&)obj).fYaxis.SetParent(&obj);
   ((TH1&)obj).fZaxis.SetParent(&obj);
   fContour.Copy(((TH1&)obj).fContour);
   fSumw2.Copy(((TH1&)obj).fSumw2);
//   fFunctions->Copy(((TH1&)obj).fFunctions);
   if (fgAddDirectory && gDirectory) {
      gDirectory->Append(&obj);
      ((TH1&)obj).fDirectory = gDirectory;
   }
}

//______________________________________________________________________________
Int_t TH1::DistancetoPrimitive(Int_t px, Int_t py)
{
//   -*-*-*-*-*-*-*-*-*Compute distance from point px,py to a line*-*-*-*-*-*
//                     ===========================================
//     Compute the closest distance of approach from point px,py to elements
//     of an histogram.
//     The distance is computed in pixels units.
//
//     Algorithm:
//     Currently, this simple model computes the distance from the mouse
//     to the histogram contour only.
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

   if (!fPainter) return 9999;
   return fPainter->DistancetoPrimitive(px,py);
}

//______________________________________________________________________________
void TH1::Divide(TF1 *f1, Double_t c1)
{
// Performs the operation: this = this/(c1*f1)
// if errors are defined (see TH1::Sumw2), errors are also recalculated.
//
// Only bins inside the function range are recomputed.
// IMPORTANT NOTE: If you intend to use the errors of this histogram later
// you should call Sumw2 before making this operation.
// This is particularly important if you fit the histogram after TH1::Divide

   if (!f1) {
      Error("Add","Attempt to divide by a non-existing function");
      return;
   }

   Int_t nbinsx = GetNbinsX();
   Int_t nbinsy = GetNbinsY();
   Int_t nbinsz = GetNbinsZ();
   if (fDimension < 2) nbinsy = -1;
   if (fDimension < 3) nbinsz = -1;

//   - Add statistics
   Double_t nEntries = fEntries;
   Stat_t s1[10];
   Int_t i;
   for (i=0;i<10;i++) {s1[i] = 0;}
   PutStats(s1);

   SetMinimum();
   SetMaximum();

//    Reset the kCanRebin option. Otherwise SetBinContent on the overflow bin
//    would resize the axis limits!
   ResetBit(kCanRebin);


//   - Loop on bins (including underflows/overflows)
   Int_t bin, binx, biny, binz;
   Double_t cu,w;
   Double_t xx[3];
   Double_t *params = 0;
   f1->InitArgs(xx,params);
   for (binz=0;binz<=nbinsz+1;binz++) {
      xx[2] = fZaxis.GetBinCenter(binz);
      for (biny=0;biny<=nbinsy+1;biny++) {
         xx[1] = fYaxis.GetBinCenter(biny);
         for (binx=0;binx<=nbinsx+1;binx++) {
            xx[0] = fXaxis.GetBinCenter(binx);
            if (!f1->IsInside(xx)) continue;
            TF1::RejectPoint(kFALSE);
            bin = binx +(nbinsx+2)*(biny + (nbinsy+2)*binz);
            Double_t error1 = GetBinError(bin);
            cu  = c1*f1->EvalPar(xx);
            if (TF1::RejectedPoint()) continue;
            if (cu) w = GetBinContent(bin)/cu;
            else    w = 0;
            SetBinContent(bin,w);
            if (fSumw2.fN) {
               if (cu != 0) fSumw2.fArray[bin] = error1*error1/(cu*cu);
               else         fSumw2.fArray[bin] = 0;
            }
         }
      }
   }
   SetEntries(nEntries);
}

//______________________________________________________________________________
void TH1::Divide(const TH1 *h1)
{
//   -*-*-*-*-*-*-*-*-*Divide this histogram by h1*-*-*-*-*-*-*-*-*-*-*-*-*
//                     ===========================
//
//   this = this/h1
//   if errors are defined (see TH1::Sumw2), errors are also recalculated.
//   Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
//   if not already set.
//   The resulting errors are calculated assuming uncorrelated histograms.
//   See the other TH1::Divide that gives the possibility to optionaly
//   compute Binomial errors.
//
// IMPORTANT NOTE: If you intend to use the errors of this histogram later
// you should call Sumw2 before making this operation.
// This is particularly important if you fit the histogram after TH1::Scale

   if (!h1) {
      Error("Divide","Attempt to divide by a non-existing histogram");
      return;
   }

   Int_t nbinsx = GetNbinsX();
   Int_t nbinsy = GetNbinsY();
   Int_t nbinsz = GetNbinsZ();
//   - Check histogram compatibility
   if (nbinsx != h1->GetNbinsX() || nbinsy != h1->GetNbinsY() || nbinsz != h1->GetNbinsZ()) {
      Error("Divide","Attempt to divide histograms with different number of bins");
      return;
   }
//   - Issue a Warning if histogram limits are different
   if (fXaxis.GetXmin() != h1->fXaxis.GetXmin() ||
       fXaxis.GetXmax() != h1->fXaxis.GetXmax() ||
       fYaxis.GetXmin() != h1->fYaxis.GetXmin() ||
       fYaxis.GetXmax() != h1->fYaxis.GetXmax() ||
       fZaxis.GetXmin() != h1->fZaxis.GetXmin() ||
       fZaxis.GetXmax() != h1->fZaxis.GetXmax()) {
       Warning("Divide","Attempt to divide histograms with different axis limits");
   }
   if (fDimension < 2) nbinsy = -1;
   if (fDimension < 3) nbinsz = -1;
   if (fDimension < 3) nbinsz = -1;

//    Create Sumw2 if h1 has Sumw2 set
   if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();

//   - Reset statistics
   Double_t nEntries = fEntries;
   fEntries = fTsumw = 0;

//    Reset the kCanRebin option. Otherwise SetBinContent on the overflow bin
//    would resize the axis limits!
   ResetBit(kCanRebin);

//   - Loop on bins (including underflows/overflows)
   Int_t bin, binx, biny, binz;
   Double_t c0,c1,w;
   for (binz=0;binz<=nbinsz+1;binz++) {
      for (biny=0;biny<=nbinsy+1;biny++) {
         for (binx=0;binx<=nbinsx+1;binx++) {
            bin = GetBin(binx,biny,binz);
            c0  = GetBinContent(bin);
            c1  = h1->GetBinContent(bin);
            if (c1) w = c0/c1;
            else    w = 0;
            SetBinContent(bin,w);
            fEntries++;
            if (fSumw2.fN) {
               Double_t e0 = GetBinError(bin);
               Double_t e1 = h1->GetBinError(bin);
               Double_t c12= c1*c1;
               if (!c1) { fSumw2.fArray[bin] = 0; continue;}
               fSumw2.fArray[bin] = (e0*e0*c1*c1 + e1*e1*c0*c0)/(c12*c12);
            }
         }
      }
   }
   Stat_t s[kNstat];
   GetStats(s);
   PutStats(s);
   SetEntries(nEntries);
}


//______________________________________________________________________________
void TH1::Divide(const TH1 *h1, const TH1 *h2, Double_t c1, Double_t c2, Option_t *option)
{
//   -*-*-*Replace contents of this histogram by the division of h1 by h2*-*-*
//         ==============================================================
//
//   this = c1*h1/(c2*h2)
//
//   if errors are defined (see TH1::Sumw2), errors are also recalculated
//   Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
//   if not already set.
//   The resulting errors are calculated assuming uncorrelated histograms.
//   However, if option ="B" is specified, Binomial errors are computed.
//
// IMPORTANT NOTE: If you intend to use the errors of this histogram later
// you should call Sumw2 before making this operation.
// This is particularly important if you fit the histogram after TH1::Divide

   TString opt = option;
   opt.ToLower();
   Bool_t binomial = kFALSE;
   if (opt.Contains("b")) binomial = kTRUE;
   if (!h1 || !h2) {
      Error("Divide","Attempt to divide by a non-existing histogram");
      return;
   }

   Int_t nbinsx = GetNbinsX();
   Int_t nbinsy = GetNbinsY();
   Int_t nbinsz = GetNbinsZ();
//   - Check histogram compatibility
   if (nbinsx != h1->GetNbinsX() || nbinsy != h1->GetNbinsY() || nbinsz != h1->GetNbinsZ()
    || nbinsx != h2->GetNbinsX() || nbinsy != h2->GetNbinsY() || nbinsz != h2->GetNbinsZ()) {
      Error("Divide","Attempt to divide histograms with different number of bins");
      return;
   }
   if (!c2) {
      Error("Divide","Coefficient of dividing histogram cannot be zero");
      return;
   }
//   - Issue a Warning if histogram limits are different
   if (fXaxis.GetXmin() != h1->fXaxis.GetXmin() ||
       fXaxis.GetXmax() != h1->fXaxis.GetXmax() ||
       fYaxis.GetXmin() != h1->fYaxis.GetXmin() ||
       fYaxis.GetXmax() != h1->fYaxis.GetXmax() ||
       fZaxis.GetXmin() != h1->fZaxis.GetXmin() ||
       fZaxis.GetXmax() != h1->fZaxis.GetXmax()) {
       Warning("Divide","Attempt to divide histograms with different axis limits");
   }
   if (fXaxis.GetXmin() != h2->fXaxis.GetXmin() ||
       fXaxis.GetXmax() != h2->fXaxis.GetXmax() ||
       fYaxis.GetXmin() != h2->fYaxis.GetXmin() ||
       fYaxis.GetXmax() != h2->fYaxis.GetXmax() ||
       fZaxis.GetXmin() != h2->fZaxis.GetXmin() ||
       fZaxis.GetXmax() != h2->fZaxis.GetXmax()) {
       Warning("Divide","Attempt to divide histograms with different axis limits");
   }
   if (fDimension < 2) nbinsy = -1;
   if (fDimension < 3) nbinsz = -1;

//    Create Sumw2 if h1 or h2 have Sumw2 set
   if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();

//   - Reset statistics
   Double_t nEntries = fEntries;
   fEntries = fTsumw = 0;

   SetMinimum();
   SetMaximum();

//    Reset the kCanRebin option. Otherwise SetBinContent on the overflow bin
//    would resize the axis limits!
   ResetBit(kCanRebin);

//   - Loop on bins (including underflows/overflows)
   Int_t bin, binx, biny, binz;
   Double_t b1,b2,w,d1,d2;
   d1 = c1*c1;
   d2 = c2*c2;
   for (binz=0;binz<=nbinsz+1;binz++) {
      for (biny=0;biny<=nbinsy+1;biny++) {
         for (binx=0;binx<=nbinsx+1;binx++) {
            bin = binx +(nbinsx+2)*(biny + (nbinsy+2)*binz);
            b1  = h1->GetBinContent(bin);
            b2  = h2->GetBinContent(bin);
            if (b2) w = c1*b1/(c2*b2);
            else    w = 0;
            SetBinContent(bin,w);
            fEntries++;
            if (fSumw2.fN) {
               Double_t e1 = h1->GetBinError(bin);
               Double_t e2 = h2->GetBinError(bin);
               Double_t b22= b2*b2*d2;
               if (!b2) { fSumw2.fArray[bin] = 0; continue;}
               if (binomial) {
                  if (b1 != b2) {
                     //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/(c2*b2));//this is the formula in Hbook/Hoper1
                     fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/b2);
                  } else {
                     //in case b1=b2 use a simplification of the special algorithm
                     //from TGraphAsymmErrors::BayesDivide calling Efficiency, etc
                     Double_t too_low  = 0;
                     Double_t too_high = 1;
                     Double_t integral;
                     Double_t a = b1+1;
                     Double_t x;
                     for (Int_t loop=0; loop<20; loop++) {
                        x = 0.5*(too_high + too_low);
                        Double_t bt = TMath::Exp(TMath::LnGamma(a+1)-TMath::LnGamma(a)+a*log(x)+log(1-x));
                        if (x < (a+1.0)/(a+3.0)) integral = 1 - bt*TMath::BetaCf(x,a,1)/a;
                        else                     integral = bt*TMath::BetaCf(1-x,1,a);
                        if (integral > 0.683)  too_low  = x;
                        else                   too_high = x;
                     }
                     fSumw2.fArray[bin] = (1-x)*(1-x)/4;
                  }
               } else {
                  fSumw2.fArray[bin] = d1*d2*(e1*e1*b2*b2 + e2*e2*b1*b1)/(b22*b22);
               }
            }
         }
      }
   }
   Stat_t s[kNstat];
   GetStats(s);
   PutStats(s);
   if (nEntries == 0) nEntries = h1->GetEntries();
   if (nEntries == 0) nEntries = 1;
   SetEntries(nEntries);
}

//______________________________________________________________________________
void TH1::Draw(Option_t *option)
{
//   -*-*-*-*-*-*-*-*-*Draw this histogram with options*-*-*-*-*-*-*-*-*-*-*-*
//                     ================================
//
//     Histograms are drawn via the THistPainter class. Each histogram has
//     a pointer to its own painter (to be usable in a multithreaded program).
//     The same histogram can be drawn with different options in different pads.
//     When an histogram drawn in a pad is deleted, the histogram is
//     automatically removed from the pad or pads where it was drawn.
//     If an histogram is drawn in a pad, then filled again, the new status
//     of the histogram will be automatically shown in the pad next time
//     the pad is updated. One does not need to redraw the histogram.
//     To draw the current version of an histogram in a pad, one can use
//        h->DrawCopy();
//     This makes a clone of the histogram. Once the clone is drawn, the original
//     histogram may be modified or deleted without affecting the aspect of the
//     clone.
//     By default, TH1::Draw clears the current pad.
//
//     One can use TH1::SetMaximum and TH1::SetMinimum to force a particular
//     value for the maximum or the minimum scale on the plot.
//
//     TH1::UseCurrentStyle can be used to change all histogram graphics
//     attributes to correspond to the current selected style.
//     This function must be called for each histogram.
//     In case one reads and draws many histograms from a file, one can force
//     the histograms to inherit automatically the current graphics style
//     by calling before gROOT->ForceStyle();
//
//     See THistPainter::Paint for a description of all the drawing options
//     =======================
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

   TString opt = option;
   opt.ToLower();
   if (gPad) {
      if (!gPad->IsEditable()) (gROOT->GetMakeDefCanvas())();
      if (!opt.Contains("same")) {
         //the following statement is necessary in case one attempts to draw
         //a temporary histogram already in the current pad
         if (TestBit(kCanDelete)) gPad->GetListOfPrimitives()->Remove(this);
         gPad->Clear();
      }
   }
   AppendPad(opt.Data());
}

//______________________________________________________________________________
TH1 *TH1::DrawCopy(Option_t *) const
{
//   -*-*-*-*-*Copy this histogram and Draw in the current pad*-*-*-*-*-*-*-*
//             ===============================================
//
//     Once the histogram is drawn into the pad, any further modification
//     using graphics input will be made on the copy of the histogram,
//     and not to the original object.
//
//     See Draw for the list of options
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
   AbstractMethod("DrawCopy");
   return 0;
}

//______________________________________________________________________________
TH1 *TH1::DrawNormalized(Option_t *option, Double_t norm) const
{
//  Draw a normalized copy of this histogram.
//
//  A clone of this histogram is normalized to norm and drawn with option.
//  A pointer to the normalized histogram is returned.
//  The contents of the histogram copy are scaled such that the new
//  sum of weights (excluding under and overflow) is equal to norm.
//  Note that the returned normalized histogram is not added to the list
//  of histograms in the current directory in memory.
//  It is the user's responsability to delete this histogram.
//  The kCanDelete bit is set for the returned object. If a pad containing
//  this copy is cleared, the histogram will be automatically deleted.
//
//     See Draw for the list of options
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

   Double_t sum = GetSumOfWeights();
   if (sum == 0) {
      Error("DrawNormalized","Sum of weights is null. Cannot normalized histogram: %s",GetName());
      return 0;
   }
   Bool_t addStatus = TH1::AddDirectoryStatus();
   TH1::AddDirectory(kFALSE);
   TH1 *h = (TH1*)Clone();
   h->SetBit(kCanDelete);
   h->Scale(norm/sum);
   h->Draw(option);
   TH1::AddDirectory(addStatus);
   return h;
}

//______________________________________________________________________________
void TH1::DrawPanel()
{
//   -*-*-*-*-*Display a panel with all histogram drawing options*-*-*-*-*-*
//             ==================================================
//
//      See class TDrawPanelHist for example

   if (!fPainter) {Draw(); if (gPad) gPad->Update();}
   if (fPainter) fPainter->DrawPanel();
}

//______________________________________________________________________________
void TH1::Eval(TF1 *f1, Option_t *option)
{
//   -*-*-*Evaluate function f1 at the center of bins of this histogram-*-*-*-*
//         ============================================================
//
//     If option "R" is specified, the function is evaluated only
//     for the bins included in the function range.
//     If option "A" is specified, the value of the function is added to the
//     existing bin contents
//     If option "S" is specified, the value of the function is used to
//     generate a value, distributed according to the Poisson
//     distribution, with f1 as the mean.
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
   Double_t x[3];
   Int_t range,stat,add,bin,binx,biny,binz,nbinsx, nbinsy, nbinsz;
   if (!f1) return;
   Double_t fu;
   Double_t e=0;
   TString opt = option;
   opt.ToLower();
   if (opt.Contains("a")) add   = 1;
   else                   add   = 0;
   if (opt.Contains("s")) stat  = 1;
   else                   stat  = 0;
   if (opt.Contains("r")) range = 1;
   else                   range = 0;
   nbinsx  = fXaxis.GetNbins();
   nbinsy  = fYaxis.GetNbins();
   nbinsz  = fZaxis.GetNbins();
   if (!add) Reset();

   for (binz=1;binz<=nbinsz;binz++) {
      x[2]  = fZaxis.GetBinCenter(binz);
      for (biny=1;biny<=nbinsy;biny++) {
         x[1]  = fYaxis.GetBinCenter(biny);
         for (binx=1;binx<=nbinsx;binx++) {
            bin = GetBin(binx,biny,binz);
            x[0]  = fXaxis.GetBinCenter(binx);
            if (range && !f1->IsInside(x)) continue;
            fu = f1->Eval(x[0],x[1],x[2]);
            if (stat) fu = gRandom->PoissonD(fu);
            if (fSumw2.fN) e = fSumw2.fArray[bin];
            AddBinContent(bin,fu);
            if (fSumw2.fN) fSumw2.fArray[bin] = e+ TMath::Abs(fu);
         }
      }
   }
}

//______________________________________________________________________________
void TH1::ExecuteEvent(Int_t event, Int_t px, Int_t py)
{
//   -*-*-*-*-*-*-*-*-*Execute action corresponding to one event*-*-*-*
//                     =========================================
//     This member function is called when a histogram is clicked with the locator
//
//     If Left button clicked on the bin top value, then the content of this bin
//     is modified according to the new position of the mouse when it is released.
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

   if (fPainter) fPainter->ExecuteEvent(event, px, py);
}

//______________________________________________________________________________
Int_t TH1::Fill(Axis_t x)
{
//   -*-*-*-*-*-*-*-*Increment bin with abscissa X by 1*-*-*-*-*-*-*-*-*-*-*
//                   ==================================
//
//    if x is less than the low-edge of the first bin, the Underflow bin is incremented
//    if x is greater than the upper edge of last bin, the Overflow bin is incremented
//
//    If the storage of the sum of squares of weights has been triggered,
//    via the function Sumw2, then the sum of the squares of weights is incremented
//    by 1 in the bin corresponding to x.
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

   if (fBuffer) return BufferFill(x,1);

   Int_t bin;
   fEntries++;
   bin =fXaxis.FindBin(x);
   AddBinContent(bin);
   if (fSumw2.fN) ++fSumw2.fArray[bin];
   if (bin == 0 || bin > fXaxis.GetNbins()) {
      if (!fgStatOverflows) return -1;
   }
   ++fTsumw;
   ++fTsumw2;
   fTsumwx  += x;
   fTsumwx2 += x*x;
   return bin;
}

//______________________________________________________________________________
Int_t TH1::Fill(Axis_t x, Stat_t w)
{
//   -*-*-*-*-*-*Increment bin with abscissa X with a weight w*-*-*-*-*-*-*-*
//               =============================================
//
//    if x is less than the low-edge of the first bin, the Underflow bin is incremented
//    if x is greater than the upper edge of last bin, the Overflow bin is incremented
//
//    If the storage of the sum of squares of weights has been triggered,
//    via the function Sumw2, then the sum of the squares of weights is incremented
//    by w^2 in the bin corresponding to x.
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

   if (fBuffer) return BufferFill(x,w);

   Int_t bin;
   fEntries++;
   bin =fXaxis.FindBin(x);
   AddBinContent(bin, w);
   if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
   if (bin == 0 || bin > fXaxis.GetNbins()) {
      if (!fgStatOverflows) return -1;
   }
   Stat_t z= (w > 0 ? w : -w);
   fTsumw   += z;
   fTsumw2  += z*z;
   fTsumwx  += z*x;
   fTsumwx2 += z*x*x;
   return bin;
}

//______________________________________________________________________________
Int_t TH1::Fill(const char *namex, Stat_t w)
{
// Increment bin with namex with a weight w
//
// if x is less than the low-edge of the first bin, the Underflow bin is incremented
// if x is greater than the upper edge of last bin, the Overflow bin is incremented
//
// If the storage of the sum of squares of weights has been triggered,
// via the function Sumw2, then the sum of the squares of weights is incremented
// by w^2 in the bin corresponding to x.
//

   Int_t bin;
   fEntries++;
   bin =fXaxis.FindBin(namex);
   AddBinContent(bin, w);
   if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
   if (bin == 0 || bin > fXaxis.GetNbins()) return -1;
   Axis_t x = fXaxis.GetBinCenter(bin);
   Stat_t z= (w > 0 ? w : -w);
   fTsumw   += z;
   fTsumw2  += z*z;
   fTsumwx  += z*x;
   fTsumwx2 += z*x*x;
   return bin;
}

//______________________________________________________________________________
void TH1::FillN(Int_t ntimes, const Axis_t *x, const Double_t *w, Int_t stride)
{
//   -*-*-*-*-*-*Fill this histogram with an array x and weights w*-*-*-*-*
//               =================================================
//
//    ntimes:  number of entries in arrays x and w (array size must be ntimes*stride)
//    x:       array of values to be histogrammed
//    w:       array of weighs
//    stride:  step size through arrays x and w
//
//    If the storage of the sum of squares of weights has been triggered,
//    via the function Sumw2, then the sum of the squares of weights is incremented
//    by w[i]^2 in the bin corresponding to x[i].
//    if w is NULL each entry is assumed a weight=1
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
   Int_t bin,i;
   fEntries += ntimes;
   Double_t ww = 1;
   Int_t nbins   = fXaxis.GetNbins();
   ntimes *= stride;
   for (i=0;i<ntimes;i+=stride) {
      bin =fXaxis.FindBin(x[i]);
      if (w) ww = w[i];
      AddBinContent(bin, ww);
      if (fSumw2.fN) fSumw2.fArray[bin] += ww*ww;
      if (bin == 0 || bin > nbins) {
         if (!fgStatOverflows) continue;
      }
      Stat_t z= (ww > 0 ? ww : -ww);
      fTsumw   += z;
      fTsumw2  += z*z;
      fTsumwx  += z*x[i];
      fTsumwx2 += z*x[i]*x[i];
   }
}

//______________________________________________________________________________
void TH1::FillRandom(const char *fname, Int_t ntimes)
{
//   -*-*-*-*-*Fill histogram following distribution in function fname*-*-*-*
//             =======================================================
//
//      The distribution contained in the function fname (TF1) is integrated
//      over the channel contents.
//      It is normalized to 1.
//      Getting one random number implies:
//        - Generating a random number between 0 and 1 (say r1)
//        - Look in which bin in the normalized integral r1 corresponds to
//        - Fill histogram channel
//      ntimes random numbers are generated
//
//     One can also call TF1::GetRandom to get a random variate from a function.
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-*-*-*

   Int_t bin, binx, ibin, loop;
   Double_t r1, x, xv[1];
//   - Search for fname in the list of ROOT defined functions
   TF1 *f1 = (TF1*)gROOT->GetFunction(fname);
   if (!f1) { Error("FillRandom", "Unknown function: %s",fname); return; }

//   - Allocate temporary space to store the integral and compute integral
   Int_t nbinsx = GetNbinsX();

   Double_t *integral = new Double_t[nbinsx+1];
   ibin = 0;
   integral[ibin] = 0;
   for (binx=1;binx<=nbinsx;binx++) {
      xv[0] = fXaxis.GetBinCenter(binx);
      ibin++;
      Double_t fval = f1->Eval(xv[0]);
      integral[ibin] = integral[ibin-1] + TMath::Abs(fval)*fXaxis.GetBinWidth(binx);
   }

//   - Normalize integral to 1
   if (integral[nbinsx] == 0 ) {
      Error("FillRandom", "Integral = zero"); return;
   }
   for (bin=1;bin<=nbinsx;bin++)  integral[bin] /= integral[nbinsx];

//   --------------Start main loop ntimes
   for (loop=0;loop<ntimes;loop++) {
      r1 = gRandom->Rndm(loop);
      ibin = TMath::BinarySearch(nbinsx,&integral[0],r1);
      binx = 1 + ibin;
      //x    = fXaxis.GetBinCenter(binx); //this is not OK when SetBuffer is used
      x    = fXaxis.GetBinLowEdge(ibin+1)
      +fXaxis.GetBinWidth(ibin+1)*(r1-integral[ibin])/(integral[ibin+1] - integral[ibin]);
      Fill(x, 1.);
  }
  delete [] integral;
}

//______________________________________________________________________________
void TH1::FillRandom(TH1 *h, Int_t ntimes)
{
//   -*-*-*-*-*Fill histogram following distribution in histogram h*-*-*-*
//             ====================================================
//
//      The distribution contained in the histogram h (TH1) is integrated
//      over the channel contents.
//      It is normalized to 1.
//      Getting one random number implies:
//        - Generating a random number between 0 and 1 (say r1)
//        - Look in which bin in the normalized integral r1 corresponds to
//        - Fill histogram channel
//      ntimes random numbers are generated
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-*-*-*

   if (!h) { Error("FillRandom", "Null histogram"); return; }
   if (fDimension != h->GetDimension()) {
      Error("FillRandom", "Histograms with different dimensions"); return;
   }

   if (h->ComputeIntegral() == 0) return;

   Int_t loop;
   Axis_t x;
   for (loop=0;loop<ntimes;loop++) {
      x = h->GetRandom();
      Fill(x);
   }
}


//______________________________________________________________________________
Int_t TH1::FindBin(Axis_t x, Axis_t y, Axis_t z)
{
//   -*-*-*-*Return Global bin number corresponding to x,y,z*-*-*-*-*-*-*
//           ===============================================
//
//      2-D and 3-D histograms are represented with a one dimensional
//      structure.
//      This has the advantage that all existing functions, such as
//        GetBinContent, GetBinError, GetBinFunction work for all dimensions.
//     See also TH1::GetBin
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

   if (GetDimension() < 2) {
      return fXaxis.FindBin(x);
   }
   if (GetDimension() < 3) {
      Int_t nx   = fXaxis.GetNbins()+2;
      Int_t binx = fXaxis.FindBin(x);
      Int_t biny = fYaxis.FindBin(y);
      return  binx + nx*biny;
   }
   if (GetDimension() < 4) {
      Int_t nx   = fXaxis.GetNbins()+2;
      Int_t ny   = fYaxis.GetNbins()+2;
      Int_t binx = fXaxis.FindBin(x);
      Int_t biny = fYaxis.FindBin(y);
      Int_t binz = fZaxis.FindBin(z);
      return  binx + nx*(biny +ny*binz);
   }
   return -1;
}

//______________________________________________________________________________
TObject *TH1::FindObject(const char *name) const
{
// search object named name in the list of functions

   if (fFunctions) return fFunctions->FindObject(name);
   return 0;
}

//______________________________________________________________________________
TObject *TH1::FindObject(const TObject *obj) const
{
// search object obj in the list of functions

   if (fFunctions) return fFunctions->FindObject(obj);
   return 0;
}

//______________________________________________________________________________
Int_t TH1::Fit(const char *fname ,Option_t *option ,Option_t *goption, Axis_t xxmin, Axis_t xxmax)
{
//                     Fit histogram with function fname
//                     =================================
//      fname is the name of an already predefined function created by TF1 or TF2
//      Predefined functions such as gaus, expo and poln are automatically
//      created by ROOT.
//      fname can also be a formula, accepted by the linear fitter (linear parts divided
//      by "++" sign), for example "x++sin(x)" for fitting "[0]*x+[1]*sin(x)"
//
//  This function finds a pointer to the TF1 object with name fname
//  and calls TH1::Fit(TF1 *f1,...)

   char *linear;
   linear= (char*)strstr(fname, "++");
   TF1 *f1=0;
   TF2 *f2=0;
   TF3 *f3=0;
   Int_t ndim=GetDimension();
   if (linear){
      if (ndim<2){
         f1=new TF1(fname, fname, xxmin, xxmax);
         return Fit(f1,option,goption,xxmin,xxmax);
      }
      else if (ndim<3){
         f2=new TF2(fname, fname);
         return Fit(f2,option,goption,xxmin,xxmax);
      }
      else{
         f3=new TF3(fname, fname);
         return Fit(f3,option,goption,xxmin,xxmax);
      }
   }

   else{
      f1 = (TF1*)gROOT->GetFunction(fname);
      if (!f1) { Printf("Unknown function: %s",fname); return -1; }
      return Fit(f1,option,goption,xxmin,xxmax);
   }
}

//______________________________________________________________________________
Int_t TH1::Fit(TF1 *f1 ,Option_t *option ,Option_t *goption, Axis_t xxmin, Axis_t xxmax)
{
//                     Fit histogram with function f1
//                     ==============================
//
//      Fit this histogram with function f1.
//
//      The list of fit options is given in parameter option.
//         option = "W"  Set all errors to 1
//                = "I" Use integral of function in bin instead of value at bin center
//                = "L" Use Loglikelihood method (default is chisquare method)
//                = "LL" Use Loglikelihood method and bin contents are not integers)
//                = "U" Use a User specified fitting algorithm (via SetFCN)
//                = "Q" Quiet mode (minimum printing)
//                = "V" Verbose mode (default is between Q and V)
//                = "E" Perform better Errors estimation using Minos technique
//                = "B" Use this option when you want to fix one or more parameters
//                      and the fitting function is like "gaus","expo","poln","landau".
//                = "M" More. Improve fit results
//                = "R" Use the Range specified in the function range
//                = "N" Do not store the graphics function, do not draw
//                = "0" Do not plot the result of the fit. By default the fitted function
//                      is drawn unless the option"N" above is specified.
//                = "+" Add this new fitted function to the list of fitted functions
//                      (by default, any previous function is deleted)
//                = "C" In case of linear fitting, don't calculate the chisquare
//                      (saves time)
//                = "F" If fitting a polN, switch to minuit fitter
//
//      When the fit is drawn (by default), the parameter goption may be used
//      to specify a list of graphics options. See TH1::Draw for a complete
//      list of these options.
//
//      In order to use the Range option, one must first create a function
//      with the expression to be fitted. For example, if your histogram
//      has a defined range between -4 and 4 and you want to fit a gaussian
//      only in the interval 1 to 3, you can do:
//           TF1 *f1 = new TF1("f1","gaus",1,3);
//           histo->Fit("f1","R");
//
//      Setting initial conditions
//      ==========================
//      Parameters must be initialized before invoking the Fit function.
//      The setting of the parameter initial values is automatic for the
//      predefined functions : poln, expo, gaus, landau. One can however disable
//      this automatic computation by specifying the option "B".
//      Note that if a predefined function is defined with an argument,
//      eg, gaus(0), expo(1), you must specify the initial values for
//      the parameters.
//      You can specify boundary limits for some or all parameters via
//           f1->SetParLimits(p_number, parmin, parmax);
//      if parmin>=parmax, the parameter is fixed
//      Note that you are not forced to fix the limits for all parameters.
//      For example, if you fit a function with 6 parameters, you can do:
//        func->SetParameters(0,3.1,1.e-6,-8,0,100);
//        func->SetParLimits(3,-10,-4);
//        func->FixParameter(4,0);
//        func->SetParLimits(5, 1,1);
//      With this setup, parameters 0->2 can vary freely
//      Parameter 3 has boundaries [-10,-4] with initial value -8
//      Parameter 4 is fixed to 0
//      Parameter 5 is fixed to 100.
//      When the lower limit and upper limit are equal, the parameter is fixed.
//      However to fix a parameter to 0, one must call the FixParameter function.
//
//      Note that option "I" gives better results but is slower.
//
//
//      Changing the fitting function
//      =============================
//     By default the fitting function H1FitChisquare is used.
//     To specify a User defined fitting function, specify option "U" and
//     call the following functions:
//       TVirtualFitter::Fitter(myhist)->SetFCN(MyFittingFunction)
//     where MyFittingFunction is of type:
//     extern void MyFittingFunction(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
//
//     Associated functions
//     ====================
//     One or more object (typically a TF1*) can be added to the list
//     of functions (fFunctions) associated to each histogram.
//     When TH1::Fit is invoked, the fitted function is added to this list.
//     Given an histogram h, one can retrieve an associated function
//     with:  TF1 *myfunc = h->GetFunction("myfunc");
//
//      Access to the fit results
//      =========================
//     If the histogram is made persistent, the list of
//     associated functions is also persistent. Given a pointer (see above)
//     to an associated function myfunc, one can retrieve the function/fit
//     parameters with calls such as:
//       Double_t chi2 = myfunc->GetChisquare();
//       Double_t par0 = myfunc->GetParameter(0); //value of 1st parameter
//       Double_t err0 = myfunc->GetParError(0);  //error on first parameter
//
//      Access to the fit covariance matrix
//      ===================================
//      Example1:
//         TH1F h("h","test",100,-2,2);
//         h.FillRandom("gaus",1000);
//         h.Fit("gaus");
//         Double_t matrix[3][3];
//         gMinuit->mnemat(&matrix[0][0],3);
//      Example2:
//         TH1F h("h","test",100,-2,2);
//         h.FillRandom("gaus",1000);
//         h.Fit("gaus");
//         TVirtualFitter *fitter = TVirtualFitter::GetFitter();
//         TMatrixD matrix(npar,npar,fitter->GetCovarianceMatrix());
//         Double_t errorFirstPar = fitter->GetCovarianceMatrixElement(0,0);
//
//
//      Changing the maximum number of parameters
//      =========================================
//     By default, the fitter TMinuit is initialized with a maximum of 25 parameters.
//     You can redefine this default value by calling :
//       TVirtualFitter::Fitter(0,150); //to get a maximum of 150 parameters
//
//      Excluding points
//      ================
//     Use TF1::RejectPoint inside your fitting function to exclude points
//     within a certain range from the fit. Example:
//     Double_t fline(Double_t *x, Double_t *par)
//     {
//         if (x[0] > 2.5 && x[0] < 3.5) {
//           TF1::RejectPoint();
//           return 0;
//        }
//        return par[0] + par[1]*x[0];
//     }
//
//     void exclude() {
//        TF1 *f1 = new TF1("f1","[0] +[1]*x +gaus(2)",0,5);
//        f1->SetParameters(6,-1,5,3,0.2);
//        TH1F *h = new TH1F("h","background + signal",100,0,5);
//        h->FillRandom("f1",2000);
//        TF1 *fline = new TF1("fline",fline,0,5,2);
//        fline->SetParameters(2,-1);
//        h->Fit("fline","l");
//     }
//
//      Warning when using the option "0"
//      =================================
//     When selecting the option "0", the fitted function is added to
//     the list of functions of the histogram, but it is not drawn.
//     You can undo what you disabled in the following way:
//       h.Fit("myFunction","0"); // fit, store function but do not draw
//       h.Draw(); function is not drawn
//       const Int_t kNotDraw = 1<<9;
//       h.GetFunction("myFunction")->ResetBit(kNotDraw);
//       h.Draw();  // function is visible again
//
//      Access to the Fitter information during fitting
//      ===============================================
//     This function calls only the abstract fitter TVirtualFitter.
//     The default fitter is TFitter (calls TMinuit).
//     The default fitter can be set in the resource file in etc/system.rootrc
//     Root.Fitter:      Fumili
//     A different fitter can also be set via TVirtualFitter::SetDefaultFitter.
//     For example, to call the "Fumili" fitter instead of "Minuit", do
//          TVirtualFitter::SetDefaultFitter("Fumili");
//     During the fitting process, the objective function:
//       chisquare, likelihood or any user defined algorithm
//     is called (see eg in the TFitter class, the static functions
//       H1FitChisquare, H1FitLikelihood).
//     This objective function, in turn, calls the user theoretical function.
//     This user function is a static function called from the TF1 *f1 function.
//     Inside this user defined theoretical function , one can access:
//       TVirtualFitter *fitter = TVirtualFitter::GetFitter();  //the current fitter
//       TH1 *hist = (TH1*)fitter->GetObjectFit(); //the histogram being fitted
//       TF1 +f1 = (TF1*)fitter->GetUserFunction(); //the user theoretical function
//
//     By default, the fitter TMinuit is initialized with a maximum of 25 parameters.
//     For fitting linear functions (containing the "++" sign" and polN functions,
//     the linear fitter is initialized.
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

   Int_t fitResult = 0;
   Int_t i, npar,nvpar,nparx;
   Double_t par, we, al, bl;
   Double_t eplus,eminus,eparab,globcc,amin,aminref,edm,errdef,werr;
   Double_t params[100], arglist[100];
   Axis_t xmin, xmax, ymin, ymax, zmin, zmax, binwidx, binwidy, binwidz;
   Int_t hxfirst, hxlast, hyfirst, hylast, hzfirst, hzlast;
   TF1 *fnew1;
   TF2 *fnew2;
   TF3 *fnew3;

   // Check validity of function
   if (!f1) {
      Error("Fit", "function may not be null pointer");
      return 0;
   }
   if (f1->IsZombie()) {
      Error("Fit", "function is zombie");
      return 0;
   }

   npar = f1->GetNpar();
   if (npar <= 0) {
      Error("Fit", "function %s has illegal number of parameters = %d", f1->GetName(), npar);
      return 0;
   }

   // Check that function has same dimension as histogram
   if (f1->GetNdim() != GetDimension()) {
      Error("Fit","function %s dimension, %d, does not match histogram dimension, %d",
            f1->GetName(), f1->GetNdim(), GetDimension());
      return 0;
   }

   hxfirst = fXaxis.GetFirst();
   hxlast  = fXaxis.GetLast();
   binwidx = fXaxis.GetBinWidth(hxlast);
   xmin    = fXaxis.GetBinLowEdge(hxfirst);
   xmax    = fXaxis.GetBinLowEdge(hxlast) +binwidx;
   hyfirst = fYaxis.GetFirst();
   hylast  = fYaxis.GetLast();
   binwidy = fYaxis.GetBinWidth(hylast);
   ymin    = fYaxis.GetBinLowEdge(hyfirst);
   ymax    = fYaxis.GetBinLowEdge(hylast) +binwidy;
   hzfirst = fZaxis.GetFirst();
   hzlast  = fZaxis.GetLast();
   binwidz = fZaxis.GetBinWidth(hzlast);
   zmin    = fZaxis.GetBinLowEdge(hzfirst);
   zmax    = fZaxis.GetBinLowEdge(hzlast) +binwidz;

//   - Decode list of options into fitOption
   Foption_t fitOption;
   if (!FitOptionsMake(option,fitOption)) return 0;
   if (xxmin != xxmax) {
      f1->SetRange(xxmin,ymin,zmin,xxmax,ymax,zmax);
      fitOption.Range = 1;
   }

//   - Check if Minuit is initialized and create special functions


   Int_t special = f1->GetNumber();
   Bool_t linear = f1->IsLinear();
   if (special==299+npar)
      linear = kTRUE;
   if (fitOption.Bound || fitOption.Like || fitOption.Errors || fitOption.Gradient || fitOption.More || fitOption.User|| fitOption.Integral || fitOption.Minuit)
      linear = kFALSE;

   char l[] ="TLinearFitter";
   Int_t strdiff = 0;
   Bool_t isSet = kFALSE;
   if (TVirtualFitter::GetFitter()){
      //Is a fitter already set? Is it linear?
      isSet=kTRUE;
      strdiff = strcmp(TVirtualFitter::GetFitter()->IsA()->GetName(), l);
   }
   if (linear){
      //
      TClass *cl = gROOT->GetClass("TLinearFitter");
      if (isSet && strdiff!=0) {
         delete TVirtualFitter::GetFitter();
         isSet=kFALSE;
      }
      if (!isSet) {
         TVirtualFitter::SetFitter((TVirtualFitter *)cl->New());
      }
   } else {
      if (isSet && strdiff==0){
         delete TVirtualFitter::GetFitter();
         isSet=kFALSE;
      }
      if (!isSet)
         TVirtualFitter::SetFitter(0);
   }

   TVirtualFitter *hFitter = TVirtualFitter::Fitter(this, f1->GetNpar());
   hFitter->Clear();

//   - Get pointer to the function by searching in the list of functions in ROOT
   gF1 = f1;
   hFitter->SetUserFunc(f1);

   if (xxmin != xxmax) f1->SetRange(xxmin,ymin,zmin,xxmax,ymax,zmax);

   hFitter->SetFitOption(fitOption);

//   - Is a Fit range specified?
   Double_t fxmin, fymin, fzmin, fxmax, fymax, fzmax;
   if (fitOption.Range) {
      f1->GetRange(fxmin, fymin, fzmin, fxmax, fymax, fzmax);
      if (fxmin > xmin) xmin = fxmin;
      if (fymin > ymin) ymin = fymin;
      if (fzmin > zmin) zmin = fzmin;
      if (fxmax < xmax) xmax = fxmax;
      if (fymax < ymax) ymax = fymax;
      if (fzmax < zmax) zmax = fzmax;
      hxfirst = fXaxis.FindFixBin(xmin); if (hxfirst < 1) hxfirst = 1;
      hxlast  = fXaxis.FindFixBin(xmax); if (hxlast > fXaxis.GetLast()) hxlast = fXaxis.GetLast();
      hyfirst = fYaxis.FindFixBin(ymin); if (hyfirst < 1) hyfirst = 1;
      hylast  = fYaxis.FindFixBin(ymax); if (hylast > fYaxis.GetLast()) hylast = fYaxis.GetLast();
      hzfirst = fZaxis.FindFixBin(zmin); if (hzfirst < 1) hzfirst = 1;
      hzlast  = fZaxis.FindFixBin(zmax); if (hzlast > fZaxis.GetLast()) hzlast = fZaxis.GetLast();
   } else {
      f1->SetRange(xmin,ymin,zmin,xmax,ymax,zmax);
   }
   hFitter->SetXfirst(hxfirst); hFitter->SetXlast(hxlast);
   hFitter->SetYfirst(hyfirst); hFitter->SetYlast(hylast);
   hFitter->SetZfirst(hzfirst); hFitter->SetZlast(hzlast);

   if (linear){
      hFitter->ExecuteCommand("FitHist", 0, 0);
   } else {
      //   - If case of a predefined function, then compute initial values of parameters
      if (fitOption.Bound) special = 0;
      if      (special == 100)      H1InitGaus();
      else if (special == 400)      H1InitGaus();
      else if (special == 200)      H1InitExpo();
      else if (special == 299+npar) H1InitPolynom();

      //   - Some initialisations
      if (!fitOption.Verbose) {
         arglist[0] = -1;
         hFitter->ExecuteCommand("SET PRINT", arglist,1);
         arglist[0] = 0;
         hFitter->ExecuteCommand("SET NOW",   arglist,0);
      }

      //   - Set error criterion for chisquare or likelihood methods
      //   -  MINUIT ErrDEF should not be set to 0.5 in case of loglikelihood fit.
      //   -  because the FCN is already multiplied by 2 in H1FitLikelihood
      //   -  if Hoption.User is specified, assume that the user has already set
      //   -  his minimization function via SetFCN.
      arglist[0] = TVirtualFitter::GetErrorDef();
      if (fitOption.Like) {
         hFitter->SetFitMethod("H1FitLikelihood");
      } else {
         if (!fitOption.User) hFitter->SetFitMethod("H1FitChisquare");
      }
      hFitter->ExecuteCommand("SET Err",arglist,1);

      //   - Transfer names and initial values of parameters to Minuit
      Int_t nfixed = 0;
      for (i=0;i<npar;i++) {
         par = f1->GetParameter(i);
         f1->GetParLimits(i,al,bl);
         if (al*bl != 0 && al >= bl) {
            al = bl = 0;
            arglist[nfixed] = i+1;
            nfixed++;
         }
         we = 0.1*TMath::Abs(bl-al);
         if (we == 0) we = 0.3*TMath::Abs(par);
         if (we == 0) we = binwidx;
         hFitter->SetParameter(i,f1->GetParName(i),par,we,al,bl);
      }
      if(nfixed > 0)hFitter->ExecuteCommand("FIX",arglist,nfixed); // Otto

      //   - Set Gradient
      if (fitOption.Gradient) {
         if (fitOption.Gradient == 1) arglist[0] = 1;
         else                       arglist[0] = 0;
         hFitter->ExecuteCommand("SET GRAD",arglist,1);
      }

      //   - Reset Print level
      if (fitOption.Verbose) {
         arglist[0] = 0; hFitter->ExecuteCommand("SET PRINT", arglist,1);
      }

      //   - Compute sum of squares of errors in the bin range
      Double_t ey, sumw2=0;
      for (i=hxfirst;i<=hxlast;i++) {
         ey = GetBinError(i);
         sumw2 += ey*ey;
      }
      //
      //
      // printf("h1: sumw2=%f\n", sumw2);
      //

      //   - Perform minimization
      arglist[0] = TVirtualFitter::GetMaxIterations();
      arglist[1] = sumw2*TVirtualFitter::GetPrecision();
      fitResult = hFitter->ExecuteCommand("MIGRAD",arglist,2);
      if (fitResult != 0) {
         //   Abnormal termination, MIGRAD might not have converged on a
         //   minimum.
         if (!fitOption.Quiet) {
            Warning("Fit","Abnormal termination of minimization.");
         }
      }
      if (fitOption.More) {
         hFitter->ExecuteCommand("IMPROVE",arglist,0);
      }
      if (fitOption.Errors) {
         hFitter->ExecuteCommand("HESSE",arglist,0);
         hFitter->ExecuteCommand("MINOS",arglist,0);
      }

      //   - Get return status
      char parName[50];
      for (i=0;i<npar;i++) {
         hFitter->GetParameter(i,parName, par,we,al,bl);
         if (!fitOption.Errors) werr = we;
         else {
            hFitter->GetErrors(i,eplus,eminus,eparab,globcc);
            if (eplus > 0 && eminus < 0) werr = 0.5*(eplus-eminus);
            else                         werr = we;
         }
         params[i] = par;
         f1->SetParameter(i,par);
         f1->SetParError(i,werr);
      }
      hFitter->GetStats(aminref,edm,errdef,nvpar,nparx);
      //     If Log Likelihood, compute an equivalent chisquare
      //if (fitOption.Like) amin = hFitter->Chisquare(npar, params, amin, params, 1);
      amin = aminref;
      if (fitOption.Like) amin = hFitter->Chisquare(npar, params);

      f1->SetChisquare(amin);
      f1->SetNDF(f1->GetNumberFitPoints()-npar+nfixed);
   }
   //   - Print final values of parameters.



   if (!fitOption.Quiet) {
      if (fitOption.Errors) hFitter->PrintResults(4,aminref);
      else                hFitter->PrintResults(3,aminref);
   }



//   - Store fitted function in histogram functions list and draw
   if (!fitOption.Nostore) {
      if (!fitOption.Plus) {
         TIter next(fFunctions, kIterBackward);
         TObject *obj;
         while ((obj = next())) {
            if (obj->InheritsFrom(TF1::Class())) {
               fFunctions->Remove(obj);
               delete obj;
            }
         }
      }
      if (GetDimension() < 2) {
         fnew1 = new TF1();
         f1->Copy(*fnew1);
         fFunctions->Add(fnew1);
         fnew1->SetParent(this);
         fnew1->Save(xmin,xmax,0,0,0,0);
         if (fitOption.Nograph) fnew1->SetBit(TF1::kNotDraw);
         fnew1->SetBit(TFormula::kNotGlobal);
      } else if (GetDimension() < 3) {
         fnew2 = new TF2();
         f1->Copy(*fnew2);
         fFunctions->Add(fnew2);
         fnew2->SetParent(this);
         fnew2->Save(xmin,xmax,ymin,ymax,0,0);
         if (fitOption.Nograph) fnew2->SetBit(TF1::kNotDraw);
         fnew2->SetBit(TFormula::kNotGlobal);
      } else {
         fnew3 = new TF3();
         f1->Copy(*fnew3);
         fFunctions->Add(fnew3);
         fnew3->SetParent(this);
         fnew3->SetBit(TFormula::kNotGlobal);
      }
      if (TestBit(kCanDelete)) return fitResult;
      if (!fitOption.Nograph && GetDimension() < 3) Draw(goption);
  }
  return fitResult;
}

//______________________________________________________________________________
void TH1::FitPanel()
{
//   -*-*-*-*-*Display a panel with all histogram fit options*-*-*-*-*-*
//             ==============================================
//
//      See class TFitPanel for example

   if (fPainter) fPainter->FitPanel();
}

//______________________________________________________________________________
TH1 *TH1::GetAsymmetry(TH1* h2, Double_t c2, Double_t dc2)
{
//  return an histogram containing the asymmetry of this histogram with h2,
//  where the asymmetry is defined as:
//
//  Asymmetry = (h1 - h2)/(h1 + h2)  where h1 = this
//
//  works for 1D, 2D, etc. histograms
//  c2 is an optional argument that gives a relative weight between the two
//  histograms, and dc2 is the error on this weight.  This is useful, for example,
//  when forming an asymmetry between two histograms from 2 different data sets that
//  need to be normalized to each other in some way.  The function calculates
//  the errors asumming Poisson statistics on h1 and h2 (that is, dh = sqrt(h)).
//
//  example:  assuming 'h1' and 'h2' are already filled
//
//     h3 = h1->GetAsymmetry(h2)
//
//  then 'h3' is created and filled with the asymmetry between 'h1' and 'h2';
//  h1 and h2 are left intact.
//
//  Note that it is the user's responsibility to manage the created histogram.
//
//  code proposed by Jason Seely (seely@mit.edu) and adapted by R.Brun
//
  // clone the histograms so top and bottom will have the
  // correct dimensions:
  // Sumw2 just makes sure the errors will be computed properly
  // when we form sums and ratios below.
  Bool_t addStatus = TH1::AddDirectoryStatus();
  TH1::AddDirectory(kFALSE);
  TH1 *asym   = (TH1*)Clone();
  asym->Sumw2();
  TH1 *top    = (TH1*)asym->Clone();
  TH1 *bottom = (TH1*)asym->Clone();
  TH1::AddDirectory(addStatus);

  // form the top and bottom of the asymmetry, and then divide:
  TH1 *h1 = this;
  top->Add(h1,h2,1,-c2);
  bottom->Add(h1,h2,1,c2);
  asym->Divide(top,bottom);

  Int_t   xmax = asym->GetNbinsX();
  Int_t   ymax = asym->GetNbinsY();
  Int_t   zmax = asym->GetNbinsZ();
  Double_t bot, error, a, b, da, db;

  // now loop over bins to calculate the correct errors
  // the reason this error calculation looks complex is because of c2
  for(Int_t i=1; i<= xmax; i++){
    for(Int_t j=1; j<= ymax; j++){
      for(Int_t k=1; k<= zmax; k++){

        // here some bin contents are written into variables to make the error
        // calculation a little more legible:
        a   = h1->GetBinContent(i,j,k);
        b   = h2->GetBinContent(i,j,k);
        bot = bottom->GetBinContent(i,j,k);

        // make sure there are some events, if not, then the errors are set = 0
        // automatically.
        if(bot < 1){}
        else{
          // computation of errors by Christos Leonidopoulos
          da    = h1->GetBinError(i,j,k);
          db    = h2->GetBinError(i,j,k);
          error = 2*TMath::Sqrt(a*a*c2*c2*db*db + c2*c2*b*b*da*da+a*a*b*b*dc2*dc2)/(bot*bot);
          asym->SetBinError(i,j,k,error);
        }
      }
    }
  }
  delete top;
  delete bottom;
  return asym;
}

//______________________________________________________________________________
Int_t TH1::GetDefaultBufferSize()
{
// return the default buffer size for automatic histograms
// the parameter fgBufferSize may be changed via SetDefaultBufferSize

   return fgBufferSize;
}


//______________________________________________________________________________
Double_t TH1::GetEntries() const
{
// return the current number of entries

   if (fBuffer) ((TH1*)this)->BufferEmpty();

   return fEntries;
}

//______________________________________________________________________________
char *TH1::GetObjectInfo(Int_t px, Int_t py) const
{
//   Redefines TObject::GetObjectInfo.
//   Displays the histogram info (bin number, contents, integral up to bin
//   corresponding to cursor position px,py
//
   return ((TH1*)this)->GetPainter()->GetObjectInfo(px,py);
}

//______________________________________________________________________________
TVirtualHistPainter *TH1::GetPainter()
{
// return pointer to painter
// if painter does not exist, it is created

   if (!fPainter) fPainter = TVirtualHistPainter::HistPainter(this);
   return fPainter;
}

//______________________________________________________________________________
Int_t TH1::GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum)
{
//  Compute Quantiles for this histogram
//     Quantile x_q of a probability distribution Function F is defined as
//
//        F(x_q) = q with 0 <= q <= 1.
//
//     For instance the median x_0.5 of a distribution is defined as that value
//     of the random variable for which the distribution function equals 0.5:
//
//        F(x_0.5) = Probability(x < x_0.5) = 0.5
//
//  code from Eddy Offermann, Renaissance
//
// input parameters
//   - this 1-d histogram (TH1F,D,etc). Could also be a TProfile
//   - nprobSum maximum size of array q and size of array probSum (if given)
//   - probSum array of positions where quantiles will be computed.
//     if probSum is null, probSum will be computed internally and will
//     have a size = number of bins + 1 in h. it will correspond to the
//      quantiles calculated at the lowest edge of the histogram (quantile=0) and
//     all the upper edges of the bins.
//     if probSum is not null, it is assumed to contain at least nprobSum values.
//  output
//   - return value nq (<=nprobSum) with the number of quantiles computed
//   - array q filled with nq quantiles
//
//  Note that the Integral of the histogram is automatically recomputed
//  if the number of entries is different of the number of entries when
//  the integral was computed last time. In case you do not use the Fill
//  functions to fill your histogram, but SetBinContent, you must call
//  TH1::ComputeIntegral before calling this function.
//
//  Getting quantiles q from two histograms and storing results in a TGraph,
//   a so-called QQ-plot
//
//     TGraph *gr = new TGraph(nprob);
//     h1->GetQuantiles(nprob,gr->GetX());
//     h2->GetQuantiles(nprob,gr->GetY());
//     gr->Draw("alp");
//
// Example:
//     void quantiles() {
//        // demo for quantiles
//        const Int_t nq = 20;
//        TH1F *h = new TH1F("h","demo quantiles",100,-3,3);
//        h->FillRandom("gaus",5000);
//
//        Double_t xq[nq];  // position where to compute the quantiles in [0,1]
//        Double_t yq[nq];  // array to contain the quantiles
//        for (Int_t i=0;i<nq;i++) xq[i] = Float_t(i+1)/nq;
//        h->GetQuantiles(nq,yq,xq);
//
//        //show the original histogram in the top pad
//        TCanvas *c1 = new TCanvas("c1","demo quantiles",10,10,700,900);
//        c1->Divide(1,2);
//        c1->cd(1);
//        h->Draw();
//
//        // show the quantiles in the bottom pad
//        c1->cd(2);
//        gPad->SetGrid();
//        TGraph *gr = new TGraph(nq,xq,yq);
//        gr->SetMarkerStyle(21);
//        gr->Draw("alp");
//     }

  if (GetDimension() > 1) {
     Error("GetQuantiles","Only available for 1-d histograms");
     return 0;
  }

  const Int_t nbins = GetXaxis()->GetNbins();
  if (!fIntegral) ComputeIntegral();
  if (fIntegral && fIntegral[nbins+1] != fEntries) ComputeIntegral();

  Int_t i, ibin;
  Double_t *prob = (Double_t*)probSum;
  Int_t nq = nprobSum;
  if (probSum == 0) {
     nq = nbins+1;
     prob = new Double_t[nq];
     prob[0] = 0;
     for (i=1;i<nq;i++) {
        prob[i] = fIntegral[i]/fIntegral[nbins];
     }
  }

  for (i = 0; i < nq; i++) {
     ibin = TMath::BinarySearch(nbins,fIntegral,prob[i]);
     while (ibin < nbins-1 && fIntegral[ibin+1] == prob[i]) {
       if (fIntegral[ibin+2] == prob[i]) ibin++;
       else break;
     }
     q[i] = GetBinLowEdge(ibin+1);
     const Double_t dint = fIntegral[ibin+1]-fIntegral[ibin];
     if (dint > 0) q[i] += GetBinWidth(ibin+1)*(prob[i]-fIntegral[ibin])/dint;
  }

  if (!probSum) delete [] prob;
  return nq;
}

//______________________________________________________________________________
Int_t TH1::FitOptionsMake(Option_t *choptin, Foption_t &fitOption)
{
//   -*-*-*-*-*-*-*Decode string choptin and fill fitOption structure*-*-*-*-*-*
//                 ================================================

   Int_t nch = strlen(choptin);
   if (!nch) return 1;

   char chopt[32];
   strcpy(chopt,choptin);

   for (Int_t i=0;i<nch;i++) chopt[i] = toupper(choptin[i]);

   if (strstr(chopt,"Q"))  fitOption.Quiet   = 1;
   if (strstr(chopt,"V")) {fitOption.Verbose = 1; fitOption.Quiet = 0;}
   if (strstr(chopt,"L"))  fitOption.Like    = 1;
   if (strstr(chopt,"LL")) fitOption.Like    = 2;
   if (strstr(chopt,"W"))  fitOption.W1      = 1;
   if (strstr(chopt,"E"))  fitOption.Errors  = 1;
   if (strstr(chopt,"M"))  fitOption.More    = 1;
   if (strstr(chopt,"R"))  fitOption.Range   = 1;
   if (strstr(chopt,"G"))  fitOption.Gradient= 1;
   if (strstr(chopt,"N"))  fitOption.Nostore = 1;
   if (strstr(chopt,"0"))  fitOption.Nograph = 1;
   if (strstr(chopt,"+"))  fitOption.Plus    = 1;
   if (strstr(chopt,"I"))  fitOption.Integral= 1;
   if (strstr(chopt,"B"))  fitOption.Bound   = 1;
   if (strstr(chopt,"U")) {fitOption.User    = 1; fitOption.Like = 0;}
   if (strstr(chopt,"F"))  fitOption.Minuit = 1;
   if (strstr(chopt,"C"))  fitOption.Nochisq = 1;
   return 1;
}

//______________________________________________________________________________
void H1InitGaus()
{
//   -*-*-*-*Compute Initial values of parameters for a gaussian*-*-*-*-*-*-*
//           ===================================================

   Double_t allcha, sumx, sumx2, x, val, rms, mean;
   Int_t bin;
   const Double_t sqrtpi = 2.506628;

//   - Compute mean value and RMS of the histogram in the given range
   TVirtualFitter *hFitter = TVirtualFitter::GetFitter();
   TH1 *curHist = (TH1*)hFitter->GetObjectFit();
   Int_t hxfirst = hFitter->GetXfirst();
   Int_t hxlast  = hFitter->GetXlast();
   Double_t valmax  = curHist->GetBinContent(hxfirst);
   Double_t binwidx = curHist->GetBinWidth(hxfirst);
   allcha = sumx = sumx2 = 0;
   for (bin=hxfirst;bin<=hxlast;bin++) {
      x       = curHist->GetBinCenter(bin);
      val     = TMath::Abs(curHist->GetBinContent(bin));
      if (val > valmax) valmax = val;
      sumx   += val*x;
      sumx2  += val*x*x;
      allcha += val;
   }
   if (allcha == 0) return;
   mean = sumx/allcha;
   rms  = TMath::Sqrt(sumx2/allcha - mean*mean);
   if (rms == 0) rms = binwidx*(hxlast-hxfirst+1)/4;
   //if the distribution is really gaussian, the best approximation
   //is binwidx*allcha/(sqrtpi*rms)
   //However, in case of non-gaussian tails, this underestimates
   //the normalisation constant. In this case the maximum value
   //is a better approximation.
   //We take the average of both quantities
   Double_t constant = 0.5*(valmax+binwidx*allcha/(sqrtpi*rms));

   //In case the mean value is outside the histo limits and
   //the RMS is bigger than the range, we take
   //  mean = center of bins
   //  rms  = half range
   Axis_t xmin = curHist->GetXaxis()->GetXmin();
   Axis_t xmax = curHist->GetXaxis()->GetXmax();
   if ((mean < xmin || mean > xmax) && rms > (xmax-xmin)) {
      mean = 0.5*(xmax+xmin);
      rms  = 0.5*(xmax-xmin);
   }
   TF1 *f1 = (TF1*)hFitter->GetUserFunc();
   f1->SetParameter(0,constant);
   f1->SetParameter(1,mean);
   f1->SetParameter(2,rms);
   f1->SetParLimits(2,0,10*rms);
}

//______________________________________________________________________________
void H1InitExpo()
{
//   -*-*-*-*Compute Initial values of parameters for an exponential*-*-*-*-*
//           =======================================================

   Double_t constant, slope;
   Int_t ifail;
   TVirtualFitter *hFitter = TVirtualFitter::GetFitter();
   Int_t hxfirst = hFitter->GetXfirst();
   Int_t hxlast  = hFitter->GetXlast();
   Int_t nchanx  = hxlast - hxfirst + 1;

   H1LeastSquareLinearFit(-nchanx, constant, slope, ifail);

   TF1 *f1 = (TF1*)hFitter->GetUserFunc();
   f1->SetParameter(0,constant);
   f1->SetParameter(1,slope);

}

//______________________________________________________________________________
void H1InitPolynom()
{
//   -*-*-*-*Compute Initial values of parameters for a polynom*-*-*-*-*-*-*
//           ===================================================

   Double_t fitpar[25];

   TVirtualFitter *hFitter = TVirtualFitter::GetFitter();
   TF1 *f1 = (TF1*)hFitter->GetUserFunc();
   Int_t hxfirst = hFitter->GetXfirst();
   Int_t hxlast  = hFitter->GetXlast();
   Int_t nchanx  = hxlast - hxfirst + 1;
   Int_t npar    = f1->GetNpar();

   if (nchanx <=1 || npar == 1) {
      TH1 *curHist = (TH1*)hFitter->GetObjectFit();
      fitpar[0] = curHist->GetSumOfWeights()/Double_t(nchanx);
   } else {
      H1LeastSquareFit( nchanx, npar, fitpar);
   }
   for (Int_t i=0;i<npar;i++) f1->SetParameter(i, fitpar[i]);
}

//______________________________________________________________________________
void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a)
{
//   -*-*-*-*-*-*Least squares lpolynomial fitting without weights*-*-*-*-*-*-*
//               =================================================
//
//     n   number of points to fit
//     m   number of parameters
//     a   array of parameters
//
//      based on CERNLIB routine LSQ: Translated to C++ by Rene Brun
//      (E.Keil.  revised by B.Schorr, 23.10.1981.)
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
    const Double_t zero = 0.;
    const Double_t one = 1.;
    const Int_t idim = 20;

    Double_t  b[400]        /* was [20][20] */;
    Int_t i, k, l, ifail;
    Double_t power;
    Double_t da[20], xk, yk;

    if (m <= 2) {
       H1LeastSquareLinearFit(n, a[0], a[1], ifail);
       return;
    }
    if (m > idim || m > n) return;
    b[0]  = Double_t(n);
    da[0] = zero;
    for (l = 2; l <= m; ++l) {
        b[l-1]           = zero;
        b[m + l*20 - 21] = zero;
        da[l-1]          = zero;
    }
    TVirtualFitter *hFitter = TVirtualFitter::GetFitter();
    TH1 *curHist  = (TH1*)hFitter->GetObjectFit();
    Int_t hxfirst = hFitter->GetXfirst();
    Int_t hxlast  = hFitter->GetXlast();
    for (k = hxfirst; k <= hxlast; ++k) {
        xk     = curHist->GetBinCenter(k);
        yk     = curHist->GetBinContent(k);
        power  = one;
        da[0] += yk;
        for (l = 2; l <= m; ++l) {
            power   *= xk;
            b[l-1]  += power;
            da[l-1] += power*yk;
        }
        for (l = 2; l <= m; ++l) {
            power            *= xk;
            b[m + l*20 - 21] += power;
        }
    }
    for (i = 3; i <= m; ++i) {
        for (k = i; k <= m; ++k) {
            b[k - 1 + (i-1)*20 - 21] = b[k + (i-2)*20 - 21];
        }
    }
    H1LeastSquareSeqnd(m, b, idim, ifail, 1, da);

    for (i=0; i<m; ++i) a[i] = da[i];

}

//______________________________________________________________________________
void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail)
{
//   -*-*-*-*-*-*-*-*Least square linear fit without weights*-*-*-*-*-*-*-*-*
//                   =======================================
//
//      extracted from CERNLIB LLSQ: Translated to C++ by Rene Brun
//      (added to LSQ by B. Schorr, 15.02.1982.)
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

    Double_t xbar, ybar, x2bar;
    Int_t i, n;
    Double_t xybar;
    Double_t fn, xk, yk;
    Double_t det;

    n     = TMath::Abs(ndata);
    ifail = -2;
    xbar  = ybar  = x2bar = xybar = 0;
    TVirtualFitter *hFitter = TVirtualFitter::GetFitter();
    TH1 *curHist  = (TH1*)hFitter->GetObjectFit();
    Int_t hxfirst = hFitter->GetXfirst();
    Int_t hxlast  = hFitter->GetXlast();
    for (i = hxfirst; i <= hxlast; ++i) {
        xk = curHist->GetBinCenter(i);
        yk = curHist->GetBinContent(i);
        if (ndata < 0) {
            if (yk <= 0) yk = 1e-9;
            yk = TMath::Log(yk);
        }
        xbar  += xk;
        ybar  += yk;
        x2bar += xk*xk;
        xybar += xk*yk;
    }
    fn    = Double_t(n);
    det   = fn*x2bar - xbar*xbar;
    ifail = -1;
    if (det <= 0) {
       a0 = ybar/fn;
       a1 = 0;
       return;
    }
    ifail = 0;
    a0 = (x2bar*ybar - xbar*xybar) / det;
    a1 = (fn*xybar - xbar*ybar) / det;

}

//______________________________________________________________________________
void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b)
{
//   -*-*-*-*-*-*Extracted from CERN Program library routine DSEQN*-*-*-*-*-*
//               =================================================
//
//           : Translated to C++ by Rene Brun
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
    Int_t a_dim1, a_offset, b_dim1, b_offset;
    Int_t nmjp1, i, j, l;
    Int_t im1, jp1, nm1, nmi;
    Double_t s1, s21, s22;
    const Double_t one = 1.;

    /* Parameter adjustments */
    b_dim1 = idim;
    b_offset = b_dim1 + 1;
    b -= b_offset;
    a_dim1 = idim;
    a_offset = a_dim1 + 1;
    a -= a_offset;

    if (idim < n) return;

    ifail = 0;
    for (j = 1; j <= n; ++j) {
        if (a[j + j*a_dim1] <= 0) { ifail = -1; return; }
        a[j + j*a_dim1] = one / a[j + j*a_dim1];
        if (j == n) continue;
        jp1 = j + 1;
        for (l = jp1; l <= n; ++l) {
            a[j + l*a_dim1] = a[j + j*a_dim1] * a[l + j*a_dim1];
            s1 = -a[l + (j+1)*a_dim1];
            for (i = 1; i <= j; ++i) { s1 = a[l + i*a_dim1] * a[i + (j+1)*a_dim1] + s1; }
            a[l + (j+1)*a_dim1] = -s1;
        }
    }
    if (k <= 0) return;

    for (l = 1; l <= k; ++l) {
        b[l*b_dim1 + 1] = a[a_dim1 + 1]*b[l*b_dim1 + 1];
    }
    if (n == 1) return;
    for (l = 1; l <= k; ++l) {
        for (i = 2; i <= n; ++i) {
            im1 = i - 1;
            s21 = -b[i + l*b_dim1];
            for (j = 1; j <= im1; ++j) {
                s21 = a[i + j*a_dim1]*b[j + l*b_dim1] + s21;
            }
            b[i + l*b_dim1] = -a[i + i*a_dim1]*s21;
        }
        nm1 = n - 1;
        for (i = 1; i <= nm1; ++i) {
            nmi = n - i;
            s22 = -b[nmi + l*b_dim1];
            for (j = 1; j <= i; ++j) {
                nmjp1 = n - j + 1;
                s22 = a[nmi + nmjp1*a_dim1]*b[nmjp1 + l*b_dim1] + s22;
            }
            b[nmi + l*b_dim1] = -s22;
        }
    }
}


//______________________________________________________________________________
Int_t TH1::GetBin(Int_t binx, Int_t biny, Int_t binz) const
{
//   -*-*-*-*Return Global bin number corresponding to binx,y,z*-*-*-*-*-*-*
//           ==================================================
//
//      2-D and 3-D histograms are represented with a one dimensional
//      structure.
//      This has the advantage that all existing functions, such as
//        GetBinContent, GetBinError, GetBinFunction work for all dimensions.
//
//     In case of a TH1x, returns binx directly.
//
//      Convention for numbering bins
//      =============================
//      For all histogram types: nbins, xlow, xup
//        bin = 0;       underflow bin
//        bin = 1;       first bin with low-edge xlow INCLUDED
//        bin = nbins;   last bin with upper-edge xup EXCLUDED
//        bin = nbins+1; overflow bin
//      In case of 2-D or 3-D histograms, a "global bin" number is defined.
//      For example, assuming a 3-D histogram with binx,biny,binz, the function
//        Int_t bin = h->GetBin(binx,biny,binz);
//      returns a global/linearized bin number. This global bin is useful
//      to access the bin information independently of the dimension.
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
   Int_t nx, ny, nz;
   if (GetDimension() < 2) {
      nx  = fXaxis.GetNbins()+2;
      if (binx < 0)   binx = 0;
      if (binx >= nx) binx = nx-1;
      return binx;
   }
   if (GetDimension() < 3) {
      nx  = fXaxis.GetNbins()+2;
      if (binx < 0)   binx = 0;
      if (binx >= nx) binx = nx-1;
      ny  = fYaxis.GetNbins()+2;
      if (biny < 0)   biny = 0;
      if (biny >= ny) biny = ny-1;
      return  binx + nx*biny;
   }
   if (GetDimension() < 4) {
      nx  = fXaxis.GetNbins()+2;
      if (binx < 0)   binx = 0;
      if (binx >= nx) binx = nx-1;
      ny  = fYaxis.GetNbins()+2;
      if (biny < 0)   biny = 0;
      if (biny >= ny) biny = ny-1;
      nz  = fZaxis.GetNbins()+2;
      if (binz < 0)   binz = 0;
      if (binz >= nz) binz = nz-1;
      return  binx + nx*(biny +ny*binz);
   }
   return -1;
}

//______________________________________________________________________________
Axis_t TH1::GetRandom() const
{
// return a random number distributed according the histogram bin contents.
// This function checks if the bins integral exists. If not, the integral
// is evaluated, normalized to one.
// The integral is automatically recomputed if the number of entries
// is not the same then when the integral was computed.
// NB Only valid for 1-d histograms. Use GetRandom2 or 3 otherwise.

   if (fDimension > 1) {
      Error("GetRandom","Function only valid for 1-d histograms");
      return 0;
   }
   Int_t nbinsx = GetNbinsX();
   Double_t integral;
   if (fIntegral) {
      if (fIntegral[nbinsx+1] != fEntries) integral = ((TH1*)this)->ComputeIntegral();
   } else {
      integral = ((TH1*)this)->ComputeIntegral();
      if (integral == 0 || fIntegral == 0) return 0;
   }
   Double_t r1 = gRandom->Rndm();
   Int_t ibin = TMath::BinarySearch(nbinsx,fIntegral,r1);
   return GetBinLowEdge(ibin+1)
      +GetBinWidth(ibin+1)*(r1-fIntegral[ibin])/(fIntegral[ibin+1] - fIntegral[ibin]);
}

//______________________________________________________________________________
Stat_t TH1::GetBinContent(Int_t) const
{
//   -*-*-*-*-*Return content of bin number bin
//             ================================
// Implemented in TH1C,S,F,D
//
//      Convention for numbering bins
//      =============================
//      For all histogram types: nbins, xlow, xup
//        bin = 0;       underflow bin
//        bin = 1;       first bin with low-edge xlow INCLUDED
//        bin = nbins;   last bin with upper-edge xup EXCLUDED
//        bin = nbins+1; overflow bin
//      In case of 2-D or 3-D histograms, a "global bin" number is defined.
//      For example, assuming a 3-D histogram with binx,biny,binz, the function
//        Int_t bin = h->GetBin(binx,biny,binz);
//      returns a global/linearized bin number. This global bin is useful
//      to access the bin information independently of the dimension.

   AbstractMethod("GetBinContent");
   return 0;
}

//______________________________________________________________________________
Stat_t TH1::GetBinContent(Int_t binx, Int_t biny) const
{
//   -*-*-*-*-*Return content of bin number binx, biny
//             =======================================
// NB: Function to be called for 2-d histograms only
// see convention for numbering bins in TH1::GetBin

   Int_t bin = GetBin(binx,biny);
   return GetBinContent(bin);
}

//______________________________________________________________________________
Stat_t TH1::GetBinContent(Int_t binx, Int_t biny, Int_t binz) const
{
//   -*-*-*-*-*Return content of bin number binx,biny,binz
//             ===========================================
// NB: Function to be called for 3-d histograms only
// see convention for numbering bins in TH1::GetBin

   Int_t bin = GetBin(binx,biny,binz);
   return GetBinContent(bin);
}

//______________________________________________________________________________
TAxis *TH1::GetXaxis() const
{
   // return a pointer to the X axis object

   return &((TH1*)this)->fXaxis;
}


//______________________________________________________________________________
TAxis *TH1::GetYaxis() const
{
   // return a pointer to the Y axis object

   return &((TH1*)this)->fYaxis;
}
//______________________________________________________________________________
TAxis *TH1::GetZaxis() const
{
   // return a pointer to the Z axis object

   return &((TH1*)this)->fZaxis;
}

//___________________________________________________________________________
void TH1::LabelsDeflate(Option_t *ax)
{
// Reduce the number of bins for this axis to the number of bins having a label.

   Int_t iaxis = AxisChoice(ax);
   TAxis *axis = 0;
   if (iaxis == 1) axis = GetXaxis();
   if (iaxis == 2) axis = GetYaxis();
   if (iaxis == 3) axis = GetZaxis();
   if (!axis) return;
   if (!axis->GetLabels()) return;
   TIter next(axis->GetLabels());
   TObject *obj;
   Int_t nbins = 0;
   while ((obj = next())) {
      if (obj->GetUniqueID()) nbins++;
   }
   if (nbins < 1) nbins = 1;
   TH1 *hold = (TH1*)Clone();
   hold->SetDirectory(0);

   Bool_t timedisp = axis->GetTimeDisplay();
   Double_t xmin = axis->GetXmin();
   Double_t xmax = axis->GetBinUpEdge(nbins);
   if (xmax <= xmin) xmax = xmin +nbins;
   axis->SetRange(0,0);
   axis->Set(nbins,xmin,xmax);
   //Int_t  nbinsx = fXaxis.GetNbins();
   //Int_t  nbinsy = fYaxis.GetNbins();
   //Int_t  nbinsz = fZaxis.GetNbins();
   Int_t  nbinsx = hold->GetXaxis()->GetNbins();
   Int_t  nbinsy = hold->GetYaxis()->GetNbins();
   Int_t  nbinsz = hold->GetZaxis()->GetNbins();
   Int_t ncells = nbinsx+2;
   if (GetDimension() > 1) ncells *= nbinsy+2;
   if (GetDimension() > 2) ncells *= nbinsz+2;
   SetBinsLength(ncells);
   Int_t errors = fSumw2.fN;
   if (errors) fSumw2.Set(ncells);
   axis->SetTimeDisplay(timedisp);

   //now loop on all bins and refill
   Double_t err,cu;
   Int_t bin,ibin,binx,biny,binz;
   Double_t oldEntries = fEntries;
   for (binz=1;binz<=nbinsz;binz++) {
      for (biny=1;biny<=nbinsy;biny++) {
         for (binx=1;binx<=nbinsx;binx++) {
            bin = hold->GetBin(binx,biny,binz);
            ibin= GetBin(binx,biny,binz);
            cu  = hold->GetBinContent(bin);
            SetBinContent(ibin,cu);
            if (errors) {
               err = hold->GetBinError(bin);
               SetBinError(ibin,err);
            }
         }
      }
   }
   fEntries = oldEntries;
   delete hold;
}

//______________________________________________________________________________
void TH1::LabelsInflate(Option_t *ax)
{
// Double the number of bins for axis.
// Refill histogram
// This function is called by TAxis::FindBin(const char *label)

   Int_t iaxis = AxisChoice(ax);
   TAxis *axis = 0;
   if (iaxis == 1) axis = GetXaxis();
   if (iaxis == 2) axis = GetYaxis();
   if (iaxis == 3) axis = GetZaxis();
   if (!axis) return;

   TH1 *hold = (TH1*)Clone();
   hold->SetDirectory(0);

   Bool_t timedisp = axis->GetTimeDisplay();
   Int_t  nbxold = fXaxis.GetNbins();
   Int_t  nbyold = fYaxis.GetNbins();
   Int_t  nbzold = fZaxis.GetNbins();
   Int_t nbins   = axis->GetNbins();
   Double_t xmin = axis->GetXmin();
   Double_t xmax = axis->GetXmax();
   xmax = xmin + 2*(xmax-xmin);
   axis->SetRange(0,0);
   axis->Set(2*nbins,xmin,xmax);
   Int_t  nbinsx = fXaxis.GetNbins();
   Int_t  nbinsy = fYaxis.GetNbins();
   Int_t  nbinsz = fZaxis.GetNbins();
   Int_t ncells = nbinsx+2;
   if (GetDimension() > 1) ncells *= nbinsy+2;
   if (GetDimension() > 2) ncells *= nbinsz+2;
   SetBinsLength(ncells);
   Int_t errors = fSumw2.fN;
   if (errors) fSumw2.Set(ncells);
   axis->SetTimeDisplay(timedisp);

   //now loop on all bins and refill
   Double_t err,cu;
   Int_t bin,ibin,binx,biny,binz;
   for (binz=1;binz<=nbinsz;binz++) {
      for (biny=1;biny<=nbinsy;biny++) {
         for (binx=1;binx<=nbinsx;binx++) {
            bin = hold->GetBin(binx,biny,binz);
            ibin= GetBin(binx,biny,binz);
            if (binx > nbxold || biny > nbyold || binz > nbzold) bin = -1;
            if (bin > 0) cu  = hold->GetBinContent(bin);
            else         cu = 0;
            SetBinContent(ibin,cu);
            if (errors) {
               if (bin > 0) err = hold->GetBinError(bin);
               else         err = 0;
               SetBinError(ibin,err);
            }
         }
      }
   }
   delete hold;
}

//______________________________________________________________________________
void TH1::LabelsOption(Option_t *option, Option_t *ax)
{
//  Set option(s) to draw axis with labels
//  option = "a" sort by alphabetic order
//         = ">" sort by decreasing values
//         = "<" sort by increasing values
//         = "h" draw labels horizonthal
//         = "v" draw labels vertical
//         = "u" draw labels up (end of label right adjusted)
//         = "d" draw labels down (start of label left adjusted)

   Int_t iaxis = AxisChoice(ax);
   TAxis *axis = 0;
   if (iaxis == 1) axis = GetXaxis();
   if (iaxis == 2) axis = GetYaxis();
   if (iaxis == 3) axis = GetZaxis();
   if (!axis) return;
   THashList *labels = axis->GetLabels();
   if (!labels) {
      Warning("LabelsOption","Cannot sort. No labels");
      return;
   }
   TString opt = option;
   opt.ToLower();
   if (opt.Contains("h")) {
      axis->SetBit(TAxis::kLabelsHori);
      axis->ResetBit(TAxis::kLabelsVert);
      axis->ResetBit(TAxis::kLabelsDown);
      axis->ResetBit(TAxis::kLabelsUp);
   }
    if (opt.Contains("v")) {
      axis->SetBit(TAxis::kLabelsVert);
      axis->ResetBit(TAxis::kLabelsHori);
      axis->ResetBit(TAxis::kLabelsDown);
      axis->ResetBit(TAxis::kLabelsUp);
   }
   if (opt.Contains("u")) {
      axis->SetBit(TAxis::kLabelsUp);
      axis->ResetBit(TAxis::kLabelsVert);
      axis->ResetBit(TAxis::kLabelsDown);
      axis->ResetBit(TAxis::kLabelsHori);
   }
   if (opt.Contains("d")) {
      axis->SetBit(TAxis::kLabelsDown);
      axis->ResetBit(TAxis::kLabelsVert);
      axis->ResetBit(TAxis::kLabelsHori);
      axis->ResetBit(TAxis::kLabelsUp);
   }
   Int_t sort = -1;
   if (opt.Contains("a")) sort = 0;
   if (opt.Contains(">")) sort = 1;
   if (opt.Contains("<")) sort = 2;
   if (sort < 0) return;
   if (sort > 0 && GetDimension() > 2) {
      Error("LabelsOption","Sorting by value not implemented for 3-D histograms");
      return;
   }

   Int_t n = TMath::Min(axis->GetNbins(), labels->GetSize());
   Int_t *a = new Int_t[n+2];
   Int_t i,j,k;
   Double_t *cont   = 0;
   Double_t *errors = 0;
   THashList *labold = new THashList(labels->GetSize(),1);
   TIter nextold(labels);
   TObject *obj;
   while ((obj=nextold())) {
      labold->Add(obj);
   }
   labels->Clear();
   if (sort > 0) {
      //---sort by values of bins
      if (GetDimension() == 1) {
         cont = new Double_t[n];
         if (fSumw2.fN) errors = new Double_t[n];
         for (i=1;i<=n;i++) {
            cont[i-1] = GetBinContent(i);
            if (errors) errors[i-1] = GetBinError(i);
         }
         if (sort ==1) TMath::Sort(n,cont,a,kTRUE);  //sort by decreasing values
         else          TMath::Sort(n,cont,a,kFALSE); //sort by increasing values
         for (i=1;i<=n;i++) {
            SetBinContent(i,cont[a[i-1]]);
            if (errors) SetBinError(i,errors[a[i-1]]);
         }
         for (i=1;i<=n;i++) {
            obj = labold->At(a[i-1]);
            labels->Add(obj);
            obj->SetUniqueID(i);
         }
      } else if (GetDimension()== 2) {
         Double_t *pcont = new Double_t[n+2];
         for (i=0;i<=n;i++) pcont[i] = 0;
         Int_t nx = fXaxis.GetNbins();
         Int_t ny = fYaxis.GetNbins();
         cont = new Double_t[(nx+2)*(ny+2)];
         if (fSumw2.fN) errors = new Double_t[n];
         for (i=1;i<=nx;i++) {
            for (j=1;j<=ny;j++) {
               cont[i+nx*j] = GetBinContent(i,j);
               if (errors) errors[i+nx*j] = GetBinError(i,j);
               if (axis == GetXaxis()) k = i;
               else                    k = j;
               pcont[k-1] += cont[i+nx*j];
            }
         }
         if (sort ==1) TMath::Sort(n,pcont,a,kTRUE);  //sort by decreasing values
         else          TMath::Sort(n,pcont,a,kFALSE); //sort by increasing values
         for (i=0;i<n;i++) {
            obj = labold->At(a[i]);
            labels->Add(obj);
            obj->SetUniqueID(i+1);
         }
         delete [] pcont;
         for (i=1;i<=nx;i++) {
            for (j=1;j<=ny;j++) {
               if (axis == GetXaxis()) {
                  SetBinContent(i,j,cont[a[i-1]+1+nx*j]);
                  if (errors) SetBinError(i,j,errors[a[i-1]+1+nx*j]);
               } else {
                  SetBinContent(i,j,cont[i+nx*(a[j-1]+1)]);
                  if (errors) SetBinError(i,j,errors[i+nx*(a[j-1]+1)]);
               }
            }
         }
      } else {
         //to be implemented
      }
   } else {
      //---alphabetic sort
      const UInt_t kUsed = 1<<18;
      TObject *objk=0;
      a[0] = 0;
      a[n+1] = n+1;
      for (i=1;i<=n;i++) {
         const char *label = "zzzzzzzzzzzz";
         for (j=1;j<=n;j++) {
            obj = labold->At(j-1);
            if (!obj) continue;
            if (obj->TestBit(kUsed)) continue;
            //use strcasecmp for case non-sensitive sort (may be an option)
            if (strcmp(label,obj->GetName()) < 0) continue;
            objk = obj;
            a[i] = j;
            label = obj->GetName();
         }
         if (objk) {
            objk->SetUniqueID(i);
            labels->Add(objk);
            objk->SetBit(kUsed);
         }
      }
      for (i=1;i<=n;i++) {
         obj = labels->At(i-1);
         if (!obj) continue;
         obj->ResetBit(kUsed);
      }

      if (GetDimension() == 1) {
         cont = new Double_t[n+2];
         if (fSumw2.fN) errors = new Double_t[n+2];
         for (i=1;i<=n;i++) {
            cont[i] = GetBinContent(a[i]);
            if (errors) errors[i] = GetBinError(a[i]);
         }
         for (i=1;i<=n;i++) {
            SetBinContent(i,cont[i]);
            if (errors) SetBinError(i,errors[i]);
         }
      } else if (GetDimension()== 2) {
         Int_t nx = fXaxis.GetNbins()+2;
         Int_t ny = fYaxis.GetNbins()+2;
         cont = new Double_t[nx*ny];
         if (fSumw2.fN) errors = new Double_t[nx*ny];
         for (i=0;i<nx;i++) {
            for (j=0;j<ny;j++) {
               cont[i+nx*j] = GetBinContent(i,j);
               if (errors) errors[i+nx*j] = GetBinError(i,j);
            }
         }
         for (i=0;i<nx;i++) {
            for (j=0;j<ny;j++) {
               if (axis == GetXaxis()) {
                  SetBinContent(i,j,cont[a[i]+nx*j]);
                  if (errors) SetBinError(i,j,errors[a[i]+nx*j]);
               } else {
                  SetBinContent(i,j,cont[i+nx*a[j]]);
                  if (errors) SetBinError(i,j,errors[i+nx*a[j]]);
               }
            }
         }
      } else {
         Int_t nx = fXaxis.GetNbins()+2;
         Int_t ny = fYaxis.GetNbins()+2;
         Int_t nz = fZaxis.GetNbins()+2;
         cont = new Double_t[nx*ny*nz];
         if (fSumw2.fN) errors = new Double_t[nx*ny*nz];
         for (i=0;i<nx;i++) {
            for (j=0;j<ny;j++) {
               for (k=0;k<nz;k++) {
                  cont[i+nx*(j+ny*k)] = GetBinContent(i,j,k);
                  if (errors) errors[i+nx*(j+ny*k)] = GetBinError(i,j,k);
               }
            }
         }
         for (i=0;i<nx;i++) {
            for (j=0;j<ny;j++) {
               for (k=0;k<nz;k++) {
                  if (axis == GetXaxis()) {
                     SetBinContent(i,j,k,cont[a[i]+nx*(j+ny*k)]);
                     if (errors) SetBinError(i,j,k,errors[a[i]+nx*(j+ny*k)]);
                  } else if (axis == GetYaxis()) {
                     SetBinContent(i,j,k,cont[i+nx*(a[j]+ny*k)]);
                     if (errors) SetBinError(i,j,k,errors[i+nx*(a[j]+ny*k)]);
                  } else {
                     SetBinContent(i,j,k,cont[i+nx*(j+ny*a[k])]);
                     if (errors) SetBinError(i,j,k,errors[i+nx*(j+ny*a[k])]);
                  }
               }
            }
         }
      }
   }
   delete labold;
   if (a)      delete [] a;
   if (cont)   delete [] cont;
   if (errors) delete [] errors;
}

//______________________________________________________________________________
static Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon = 0.00000001)
{
   return TMath::Abs(a - b) < epsilon;
}

//______________________________________________________________________________
static Bool_t AlmostInteger(Double_t a, Double_t epsilon = 0.00000001)
{
   return AlmostEqual(a - TMath::Floor(a), 0, epsilon) ||
          AlmostEqual(a - TMath::Floor(a), 1, epsilon);
}

//______________________________________________________________________________
Bool_t TH1::SameLimitsAndNBins(const TAxis& axis1, const TAxis& axis2)
{
   if ((axis1.GetNbins() == axis2.GetNbins())
    && (axis1.GetXmin() == axis2.GetXmin())
    && (axis1.GetXmax() == axis2.GetXmax()))
      return kTRUE;
   else
      return kFALSE;
}

//______________________________________________________________________________
Bool_t TH1::RecomputeAxisLimits(TAxis& destAxis, const TAxis& anAxis)
{
   // Finds new limits for the axis for the Merge function.
   // returns false if the limits are incompatible
   if (SameLimitsAndNBins(destAxis, anAxis))
      return kTRUE;

   if (destAxis.GetXbins()->fN || anAxis.GetXbins()->fN)
      return kFALSE;       // user binning not supported

   Axis_t width1 = destAxis.GetBinWidth(0);
   Axis_t width2 = anAxis.GetBinWidth(0);
   if (width1 == 0 || width2 == 0)
      return kFALSE;       // no binning not supported

   Axis_t xmin = TMath::Min(destAxis.GetXmin(), anAxis.GetXmin());
   Axis_t xmax = TMath::Max(destAxis.GetXmax(), anAxis.GetXmax());
   Axis_t width = TMath::Max(width1, width2);

   // check the bin size
   if (!AlmostInteger(width/width1) || !AlmostInteger(width/width2))
      return kFALSE;

   // check the limits
   Axis_t delta;
   delta = (destAxis.GetXmin() - xmin)/width1;
   if (!AlmostInteger(delta))
      xmin -= (TMath::Ceil(delta) - delta)*width1;

   delta = (anAxis.GetXmin() - xmin)/width2;
   if (!AlmostInteger(delta))
      xmin -= (TMath::Ceil(delta) - delta)*width2;

   delta = (destAxis.GetXmin() - xmin)/width1;
   if (!AlmostInteger(delta))
      return kFALSE;

   delta = (xmax - destAxis.GetXmax())/width1;
   if (!AlmostInteger(delta))
      xmax += (TMath::Ceil(delta) - delta)*width1;

   delta = (xmax - anAxis.GetXmax())/width2;
   if (!AlmostInteger(delta))
      xmax += (TMath::Ceil(delta) - delta)*width2;

   delta = (xmax - destAxis.GetXmax())/width1;
   if (!AlmostInteger(delta))
      return kFALSE;
#ifdef DEBUG
   if (!AlmostInteger((xmax - xmin) / width)) {   // unnecessary check
      printf("TH1::RecomputeAxisLimits - Impossible\n");
      return kFALSE;
   }
#endif
   destAxis.Set(TMath::Nint((xmax - xmin)/width), xmin, xmax);
   return kTRUE;
}

//______________________________________________________________________________
Long64_t TH1::Merge(TCollection *li)
{
// Add all histograms in the collection to this histogram.
// This function computes the min/max for the x axis,
// compute a new number of bins, if necessary,
// add bin contents, errors and statistics.
// If all histograms have bin labels, bins with identical labels
// will be merged, no matter what their order is.
// If overflows are present and limits are different the function will fail.
// The function returns the total number of entries in the result histogram
// if the merge is successfull, -1 otherwise.
//
// IMPORTANT remark. The axis x may have different number
// of bins and different limits, BUT the largest bin width must be
// a multiple of the smallest bin width and the upper limit must also
// be a multiple of the bin width.
// Example:
// void atest() {
//    TH1F *h1 = new TH1F("h1","h1",110,-110,0);
//    TH1F *h2 = new TH1F("h2","h2",220,0,110);
//    TH1F *h3 = new TH1F("h3","h3",330,-55,55);
//    TRandom r;
//    for (Int_t i=0;i<10000;i++) {
//       h1->Fill(r.Gaus(-55,10));
//       h2->Fill(r.Gaus(55,10));
//       h3->Fill(r.Gaus(0,10));
//    }
//
//    TList *list = new TList;
//    list->Add(h1);
//    list->Add(h2);
//    list->Add(h3);
//    TH1F *h = (TH1F*)h1->Clone("h");
//    h->Reset();
//    h.Merge(list);
//    h->Draw();
// }

   if (!li) return 0;
   if (li->IsEmpty()) return (Int_t) GetEntries();

   TList inlist;
   TH1* hclone = (TH1*)Clone("FirstClone");
   BufferEmpty(1);         // To remove buffer.
   Reset();                // BufferEmpty sets limits so we can't use it later.
   SetEntries(0);
   inlist.Add(hclone);
   inlist.AddAll(li);

   THashList allLabels;
   THashList* labels=GetXaxis()->GetLabels();
   Bool_t haveOneLabel=kFALSE;
   if (labels) {
      TIter iL(labels);
      TObjString* lb;
      while ((lb=(TObjString*)iL())) {
         haveOneLabel |= (lb && lb->String().Length());
         if (!allLabels.FindObject(lb))
            allLabels.Add(lb);
      }
   }

   TAxis newXAxis;
   Bool_t initialLimitsFound = kFALSE;
   Bool_t allHaveLabels = haveOneLabel;
   Bool_t same = kTRUE;
   Bool_t allHaveLimits = kTRUE;

   TIter next(&inlist);
   while (TObject *o = next()) {
      TH1* h = dynamic_cast<TH1*> (o);
      if (!h) {
         Error("Add","Attempt to add object of class: %s to a %s",
               o->ClassName(),this->ClassName());
         return -1;
      }
      Bool_t hasLimits = h->GetXaxis()->GetXmin() < h->GetXaxis()->GetXmax();
      allHaveLimits = allHaveLimits && hasLimits;

      if (hasLimits) {
         h->BufferEmpty();
         if (!initialLimitsFound) {
            initialLimitsFound = kTRUE;
            newXAxis.Set(h->GetXaxis()->GetNbins(), h->GetXaxis()->GetXmin(),
                     h->GetXaxis()->GetXmax());
         }
         else {
            if (!RecomputeAxisLimits(newXAxis, *(h->GetXaxis()))) {
               Error("Merge", "Cannot merge histograms - limits are inconsistent:\n "
                     "first: (%d, %f, %f), second: (%d, %f, %f)",
                     newXAxis.GetNbins(), newXAxis.GetXmin(), newXAxis.GetXmax(),
                     h->GetXaxis()->GetNbins(), h->GetXaxis()->GetXmin(),
                     h->GetXaxis()->GetXmax());
            }
         }
      }
      if (allHaveLabels) {
         THashList* labels=h->GetXaxis()->GetLabels();
         Bool_t haveOneLabel=kFALSE;
         if (labels) {
            TIter iL(labels);
            TObjString* lb;
            while ((lb=(TObjString*)iL())) {
               haveOneLabel |= (lb && lb->String().Length());
               if (!allLabels.FindObject(lb)) {
                  allLabels.Add(lb);
                  same = kFALSE;
               }
            }
         }
         allHaveLabels&=(labels && haveOneLabel);
         if (!allHaveLabels)
            Warning("Merge","Not all histograms have labels. I will ignore labels,"
                    " falling back to bin numbering mode.");
      }
   }
   next.Reset();

   same = same && SameLimitsAndNBins(newXAxis, *GetXaxis());
   if (!same && initialLimitsFound)
      SetBins(newXAxis.GetNbins(), newXAxis.GetXmin(), newXAxis.GetXmax());

   if (!allHaveLimits) {
      // fill this histogram with all the data from buffers of histograms without limits
      while (TH1* h = (TH1*)next()) {
         if (h->GetXaxis()->GetXmin() >= h->GetXaxis()->GetXmax() && h->fBuffer) {
            // no limits
            Int_t nbentries = (Int_t)h->fBuffer[0];
            for (Int_t i = 0; i < nbentries; i++)
               Fill(h->fBuffer[2*i + 2], h->fBuffer[2*i + 1]);
                                        // Entries from buffers have to be filled one by one
                                        // because FillN doesn't resize histograms.
         }
      }
      if (!initialLimitsFound)
         return (Int_t) GetEntries();  // all histograms have been processed
      next.Reset();
   }

   //merge bin contents and errors
   Stat_t stats[kNstat], totstats[kNstat];
   for (Int_t i=0;i<kNstat;i++) {totstats[i] = stats[i] = 0;}
   GetStats(totstats);
   Stat_t nentries = GetEntries();
   Int_t binx, ix, nx;
   Double_t cu;
   Bool_t canRebin=TestBit(kCanRebin);
   ResetBit(kCanRebin); // reset, otherwise setting the under/overflow will rebin
   while (TH1* h=(TH1*)next()) {
      // process only if the histogram has limits; otherwise it was processed before
      if (h->GetXaxis()->GetXmin() < h->GetXaxis()->GetXmax()) {
         // import statistics
         h->GetStats(stats);
         for (Int_t i=0;i<kNstat;i++)
            totstats[i] += stats[i];
         nentries += h->GetEntries();

         nx = h->GetXaxis()->GetNbins();
         for (binx = 0; binx <= nx + 1; binx++) {
            cu = h->GetBinContent(binx);
            if (!allHaveLabels || !binx || binx==nx+1) {
               if ((!same) && (binx == 0 || binx == nx + 1)) {
                  if (cu != 0) {
                     Error("Merge", "Cannot merge histograms - the histograms have"
                                    " different limits and undeflows/overflows are present."
                                    " The initial histogram is now broken!");
                     return -1;
                  }
               }
               ix = fXaxis.FindBin(h->GetXaxis()->GetBinCenter(binx));
            } else {
               const char* label=h->GetXaxis()->GetBinLabel(binx);
               if (!label) label="";
               ix = fXaxis.FindBin(label);
            }
            AddBinContent(ix,cu);
            if (fSumw2.fN) {
               Double_t error1 = h->GetBinError(binx);
               fSumw2.fArray[ix] += error1*error1;
            }
         }
      }
   }
   if (canRebin) SetBit(kCanRebin);

   //copy merged stats
   PutStats(totstats);
   SetEntries(nentries);
   if (hclone) delete hclone;
   return (Long64_t)nentries;
}

//______________________________________________________________________________
void TH1::Multiply(TF1 *f1, Double_t c1)
{
// Performs the operation: this = this*c1*f1
// if errors are defined (see TH1::Sumw2), errors are also recalculated.
//
// Only bins inside the function range are recomputed.
// IMPORTANT NOTE: If you intend to use the errors of this histogram later
// you should call Sumw2 before making this operation.
// This is particularly important if you fit the histogram after TH1::Multiply

   if (!f1) {
      Error("Add","Attempt to multiply by a non-existing function");
      return;
   }

   Int_t nbinsx = GetNbinsX();
   Int_t nbinsy = GetNbinsY();
   Int_t nbinsz = GetNbinsZ();
   if (fDimension < 2) nbinsy = -1;
   if (fDimension < 3) nbinsz = -1;

//   - Add statistics
   Double_t nEntries = fEntries;
   Stat_t s1[10];
   Int_t i;
   for (i=0;i<10;i++) {s1[i] = 0;}
   PutStats(s1);

   SetMinimum();
   SetMaximum();

//    Reset the kCanRebin option. Otherwise SetBinContent on the overflow bin
//    would resize the axis limits!
   ResetBit(kCanRebin);

//   - Loop on bins (including underflows/overflows)
   Int_t bin, binx, biny, binz;
   Double_t cu,w;
   Double_t xx[3];
   Double_t *params = 0;
   f1->InitArgs(xx,params);
   for (binz=0;binz<=nbinsz+1;binz++) {
      xx[2] = fZaxis.GetBinCenter(binz);
      for (biny=0;biny<=nbinsy+1;biny++) {
         xx[1] = fYaxis.GetBinCenter(biny);
         for (binx=0;binx<=nbinsx+1;binx++) {
            xx[0] = fXaxis.GetBinCenter(binx);
            if (!f1->IsInside(xx)) continue;
            TF1::RejectPoint(kFALSE);
            bin = binx +(nbinsx+2)*(biny + (nbinsy+2)*binz);
            Double_t error1 = GetBinError(bin);
            cu  = c1*f1->EvalPar(xx);
            if (TF1::RejectedPoint()) continue;
            w = GetBinContent(bin)*cu;
            SetBinContent(bin,w);
            if (fSumw2.fN) {
               fSumw2.fArray[bin] = cu*cu*error1*error1;
            }
         }
      }
   }
   SetEntries(nEntries);
}

//______________________________________________________________________________
void TH1::Multiply(const TH1 *h1)
{
//   -*-*-*-*-*-*-*-*-*Multiply this histogram by h1*-*-*-*-*-*-*-*-*-*-*-*-*
//                     =============================
//
//   this = this*h1
//
//   If errors of this are available (TH1::Sumw2), errors are recalculated.
//   Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
//   if not already set.
//
// IMPORTANT NOTE: If you intend to use the errors of this histogram later
// you should call Sumw2 before making this operation.
// This is particularly important if you fit the histogram after TH1::Multiply

   if (!h1) {
      Error("Multiply","Attempt to multiply by a non-existing histogram");
      return;
   }

   Int_t nbinsx = GetNbinsX();
   Int_t nbinsy = GetNbinsY();
   Int_t nbinsz = GetNbinsZ();
//   - Check histogram compatibility
   if (nbinsx != h1->GetNbinsX() || nbinsy != h1->GetNbinsY() || nbinsz != h1->GetNbinsZ()) {
      Error("Multiply","Attempt to multiply histograms with different number of bins");
      return;
   }
//   - Issue a Warning if histogram limits are different
   if (fXaxis.GetXmin() != h1->fXaxis.GetXmin() ||
       fXaxis.GetXmax() != h1->fXaxis.GetXmax() ||
       fYaxis.GetXmin() != h1->fYaxis.GetXmin() ||
       fYaxis.GetXmax() != h1->fYaxis.GetXmax() ||
       fZaxis.GetXmin() != h1->fZaxis.GetXmin() ||
       fZaxis.GetXmax() != h1->fZaxis.GetXmax()) {
       Warning("Multiply","Attempt to multiply histograms with different axis limits");
   }
   if (fDimension < 2) nbinsy = -1;
   if (fDimension < 3) nbinsz = -1;
   if (fDimension < 3) nbinsz = -1;

//    Create Sumw2 if h1 has Sumw2 set
   if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();

//   - Reset statistics
   Double_t nEntries = fEntries;
   fEntries = fTsumw = 0;

   SetMinimum();
   SetMaximum();

//    Reset the kCanRebin option. Otherwise SetBinContent on the overflow bin
//    would resize the axis limits!
   ResetBit(kCanRebin);

//   - Loop on bins (including underflows/overflows)
   Int_t bin, binx, biny, binz;
   Double_t c0,c1,w;
   for (binz=0;binz<=nbinsz+1;binz++) {
      for (biny=0;biny<=nbinsy+1;biny++) {
         for (binx=0;binx<=nbinsx+1;binx++) {
            bin = GetBin(binx,biny,binz);
            c0  = GetBinContent(bin);
            c1  = h1->GetBinContent(bin);
            w   = c0*c1;
            SetBinContent(bin,w);
            fEntries++;
            if (fSumw2.fN) {
               Double_t e0 = GetBinError(bin);
               Double_t e1 = h1->GetBinError(bin);
               fSumw2.fArray[bin] = (e0*e0*c1*c1 + e1*e1*c0*c0);
            }
         }
      }
   }
   Stat_t s[kNstat];
   GetStats(s);
   PutStats(s);
   SetEntries(nEntries);
}


//______________________________________________________________________________
void TH1::Multiply(const TH1 *h1, const TH1 *h2, Double_t c1, Double_t c2, Option_t *option)
{
//   -*-*-*Replace contents of this histogram by multiplication of h1 by h2*-*
//         ================================================================
//
//   this = (c1*h1)*(c2*h2)
//
//   If errors of this are available (TH1::Sumw2), errors are recalculated.
//   Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
//   if not already set.
//
// IMPORTANT NOTE: If you intend to use the errors of this histogram later
// you should call Sumw2 before making this operation.
// This is particularly important if you fit the histogram after TH1::Multiply

   TString opt = option;
   opt.ToLower();
//   Bool_t binomial = kFALSE;
//   if (opt.Contains("b")) binomial = kTRUE;
   if (!h1 || !h2) {
      Error("Multiply","Attempt to multiply by a non-existing histogram");
      return;
   }

   Int_t nbinsx = GetNbinsX();
   Int_t nbinsy = GetNbinsY();
   Int_t nbinsz = GetNbinsZ();
//   - Check histogram compatibility
   if (nbinsx != h1->GetNbinsX() || nbinsy != h1->GetNbinsY() || nbinsz != h1->GetNbinsZ()
    || nbinsx != h2->GetNbinsX() || nbinsy != h2->GetNbinsY() || nbinsz != h2->GetNbinsZ()) {
      Error("Multiply","Attempt to multiply histograms with different number of bins");
      return;
   }
//   - Issue a Warning if histogram limits are different
   if (fXaxis.GetXmin() != h1->fXaxis.GetXmin() ||
       fXaxis.GetXmax() != h1->fXaxis.GetXmax() ||
       fYaxis.GetXmin() != h1->fYaxis.GetXmin() ||
       fYaxis.GetXmax() != h1->fYaxis.GetXmax() ||
       fZaxis.GetXmin() != h1->fZaxis.GetXmin() ||
       fZaxis.GetXmax() != h1->fZaxis.GetXmax()) {
       Warning("Multiply","Attempt to multiply histograms with different axis limits");
   }
   if (fXaxis.GetXmin() != h2->fXaxis.GetXmin() ||
       fXaxis.GetXmax() != h2->fXaxis.GetXmax() ||
       fYaxis.GetXmin() != h2->fYaxis.GetXmin() ||
       fYaxis.GetXmax() != h2->fYaxis.GetXmax() ||
       fZaxis.GetXmin() != h2->fZaxis.GetXmin() ||
       fZaxis.GetXmax() != h2->fZaxis.GetXmax()) {
       Warning("Multiply","Attempt to multiply histograms with different axis limits");
   }
   if (fDimension < 2) nbinsy = -1;
   if (fDimension < 3) nbinsz = -1;

//    Create Sumw2 if h1 or h2 have Sumw2 set
   if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();

//   - Reset statistics
   Double_t nEntries = fEntries;
   fEntries = fTsumw   = fTsumw2 = fTsumwx = fTsumwx2 = 0;
   SetMinimum();
   SetMaximum();

//    Reset the kCanRebin option. Otherwise SetBinContent on the overflow bin
//    would resize the axis limits!
   ResetBit(kCanRebin);

//   - Loop on bins (including underflows/overflows)
   Int_t bin, binx, biny, binz;
   Double_t b1,b2,w,d1,d2;
   d1 = c1*c1;
   d2 = c2*c2;
   for (binz=0;binz<=nbinsz+1;binz++) {
      for (biny=0;biny<=nbinsy+1;biny++) {
         for (binx=0;binx<=nbinsx+1;binx++) {
            bin = binx +(nbinsx+2)*(biny + (nbinsy+2)*binz);
            b1  = h1->GetBinContent(bin);
            b2  = h2->GetBinContent(bin);
            w   = (c1*b1)*(c2*b2);
            SetBinContent(bin,w);
            fEntries++;
            if (fSumw2.fN) {
               Double_t e1 = h1->GetBinError(bin);
               Double_t e2 = h2->GetBinError(bin);
               fSumw2.fArray[bin] = d1*d2*(e1*e1*b2*b2 + e2*e2*b1*b1);
            }
         }
      }
   }
   Stat_t s[kNstat];
   GetStats(s);
   PutStats(s);
   SetEntries(nEntries);
}

//______________________________________________________________________________
void TH1::Paint(Option_t *option)
{
//   -*-*-*-*-*-*-*Control routine to paint any kind of histograms*-*-*-*-*-*-*
//                 ===============================================
//
//  This function is automatically called by TCanvas::Update.
//  (see TH1::Draw for the list of options)

   GetPainter();

   if (fPainter) {
      if (strlen(option) > 0) fPainter->Paint(option);
      else                    fPainter->Paint(fOption.Data());
   }
}

//______________________________________________________________________________
TH1 *TH1::Rebin(Int_t ngroup, const char*newname)
{
//   -*-*-*Rebin this histogram grouping ngroup bins together*-*-*-*-*-*-*-*-*
//         ==================================================
//   if newname is not blank a new temporary histogram hnew is created.
//   else the current histogram is modified (default)
//   The parameter ngroup indicates how many bins of this have to me merged
//   into one bin of hnew
//   If the original histogram has errors stored (via Sumw2), the resulting
//   histograms has new errors correctly calculated.
//
//   examples: if h1 is an existing TH1F histogram with 100 bins
//     h1->Rebin();  //merges two bins in one in h1: previous contents of h1 are lost
//     h1->Rebin(5); //merges five bins in one in h1
//     TH1F *hnew = h1->Rebin(5,"hnew"); // creates a new histogram hnew
//                                       //merging 5 bins of h1 in one bin
//
//   NOTE:  If ngroup is not an exact divider of the number of bins,
//          the top limit of the rebinned histogram is changed
//          to the upper edge of the bin=newbins*ngroup and the corresponding
//          bins are added to the overflow bin.
//          Statistics will be recomputed from the new bin contents.

   Int_t nbins  = fXaxis.GetNbins();
   Axis_t xmin  = fXaxis.GetXmin();
   Axis_t xmax  = fXaxis.GetXmax();
   if ((ngroup <= 0) || (ngroup > nbins)) {
      Error("Rebin", "Illegal value of ngroup=%d",ngroup);
      return 0;
   }
   if (fDimension > 1 || InheritsFrom("TProfile")) {
      Error("Rebin", "Operation valid on 1-D histograms only");
      return 0;
   }
   Int_t newbins = nbins/ngroup;

   // Save old bin contents into a new array
   Double_t entries = fEntries;
   Double_t *oldBins = new Double_t[nbins];
   Int_t bin, i;
   for (bin=0;bin<nbins;bin++) oldBins[bin] = GetBinContent(bin+1);
   Double_t *oldErrors = 0;
   if (fSumw2.fN != 0) {
      oldErrors = new Double_t[nbins];
      for (bin=0;bin<nbins;bin++) oldErrors[bin] = GetBinError(bin+1);
   }

   // create a clone of the old histogram if newname is specified
   TH1 *hnew = this;
   if (newname && strlen(newname) > 0) {
      hnew = (TH1*)Clone();
      hnew->SetName(newname);
   }

   // change axis specs and rebuild bin contents array::RebinAx
   if(newbins*ngroup != nbins) {
      xmax = fXaxis.GetBinUpEdge(newbins*ngroup);
      hnew->fTsumw = 0; //stats must be reset because top bins will be moved to overflow bin
   }
   // save the TAttAxis members (reset by SetBins)
        Int_t    nDivisions  = fXaxis.GetNdivisions();
        Color_t  axisColor   = fXaxis.GetAxisColor();
        Color_t  labelColor  = fXaxis.GetLabelColor();
        Style_t  labelFont   = fXaxis.GetLabelFont();
        Float_t  labelOffset = fXaxis.GetLabelOffset();
        Float_t  labelSize   = fXaxis.GetLabelSize();
        Float_t  tickLength  = fXaxis.GetTickLength();
        Float_t  titleOffset = fXaxis.GetTitleOffset();
        Float_t  titleSize   = fXaxis.GetTitleSize();
        Color_t  titleColor  = fXaxis.GetTitleColor();
        Style_t  titleFont   = fXaxis.GetTitleFont();

   if(fXaxis.GetXbins()->GetSize() > 0){ // variable bin sizes
      Axis_t *bins = new Axis_t[newbins+1];
      for(Int_t i = 0; i <= newbins; ++i) bins[i] = fXaxis.GetBinLowEdge(1+i*ngroup);
      hnew->SetBins(newbins,bins); //this also changes errors array (if any)
      delete [] bins;
   } else {
      hnew->SetBins(newbins,xmin,xmax); //this also changes errors array (if any)
   }

   // Restore axis attributes
        fXaxis.SetNdivisions(nDivisions);
        fXaxis.SetAxisColor(axisColor);
        fXaxis.SetLabelColor(labelColor);
        fXaxis.SetLabelFont(labelFont);
        fXaxis.SetLabelOffset(labelOffset);
        fXaxis.SetLabelSize(labelSize);
        fXaxis.SetTickLength(tickLength);
        fXaxis.SetTitleOffset(titleOffset);
        fXaxis.SetTitleSize(titleSize);
        fXaxis.SetTitleColor(titleColor);
        fXaxis.SetTitleFont(titleFont);

   // copy merged bin contents (ignore under/overflows)
   Int_t oldbin = 0;
   Double_t binContent, binError;
   for (bin = 0;bin<=newbins;bin++) {
      binContent = 0;
      binError   = 0;
      for (i=0;i<ngroup;i++) {
         if (oldbin+i >= nbins) break;
         binContent += oldBins[oldbin+i];
         if (oldErrors) binError += oldErrors[oldbin+i]*oldErrors[oldbin+i];
      }
      hnew->SetBinContent(bin+1,binContent);
      if (oldErrors) hnew->SetBinError(bin+1,TMath::Sqrt(binError));
      oldbin += ngroup;
   }
   hnew->SetEntries(entries); //was modified by SetBinContent

   delete [] oldBins;
   if (oldErrors) delete [] oldErrors;
   return hnew;
}

//______________________________________________________________________________
Bool_t TH1::FindNewAxisLimits(const TAxis* axis, const Axis_t point, Axis_t& newMin, Axis_t &newMax)
{
   // finds new limits for the axis so that *point* is within the range and
   // the limits are compatible with the previous ones (see TH1::Merge).
   // new limits are put into *newMin* and *newMax* variables.
   // axis - axis whose limits are to be recomputed
   // point - point that should fit within the new axis limits
   // newMin - new minimum will be stored here
   // newMax - new maximum will be stored here.
   // false if failed (e.g. if the initial axis limits are wrong
   // or the new range is more than 2^64 times the old one).

   Axis_t xmin = axis->GetXmin();
   Axis_t xmax = axis->GetXmax();
   if (xmin >= xmax) return kFALSE;
   Axis_t range = xmax-xmin;
   Axis_t binsize = range / axis->GetNbins();

    //recompute new axis limits by doubling the current range
   Int_t ntimes = 0;
   while (point < xmin) {
      if (ntimes++ > 64)
         return kFALSE;
      xmin = xmin - range;
      range *= 2;
      binsize *= 2;
      // make sure that the merging will be correct
      if ( xmin / binsize - TMath::Floor(xmin / binsize) >= 0.5) {
         xmin += 0.5 * binsize;
         xmax += 0.5 * binsize;  // won't work with a histogram with only one bin, but I don't care
      }
   }
   while (point >= xmax) {
      if (ntimes++ > 64)
         return kFALSE;
      xmax = xmax + range;
      range *= 2;
      binsize *= 2;
      // make sure that the merging will be correct
      if ( xmin / binsize - TMath::Floor(xmin / binsize) >= 0.5) {
         xmin -= 0.5 * binsize;
         xmax -= 0.5 * binsize;  // won't work with a histogram with only one bin, but I don't care
      }
   }
   newMin = xmin;
   newMax = xmax;
//   Info("FindNewAxisLimits", "OldAxis: (%lf, %lf), new: (%lf, %lf), point: %lf",
//      axis->GetXmin(), axis->GetXmax(), xmin, xmax, point);

   return kTRUE;
}

//______________________________________________________________________________
void TH1::RebinAxis(Axis_t x, const char *ax)
{
// Histogram is resized along ax such that x is in the axis range.
// The new axis limits are recomputed by doubling iteratively
// the current axis range until the specified value x is within the limits.
// The algorithm makes a copy of the histogram, then loops on all bins
// of the old histogram to fill the rebinned histogram.
// Takes into account errors (Sumw2) if any.
// The algorithm works for 1-d, 2-d and 3-d histograms.
// The bit kCanRebin must be set before invoking this function.
//  Ex:  h->SetBit(TH1::kCanRebin);

   if (!TestBit(kCanRebin)) return;
   if (TMath::IsNaN(x)) {         // x may be a NaN
      ResetBit(kCanRebin);
      return;
   }

   char achoice = toupper(ax[0]);
   TAxis *axis = &fXaxis;
   if (achoice == 'Y') axis = &fYaxis;
   if (achoice == 'Z') axis = &fZaxis;
   if (axis->GetXmin() >= axis->GetXmax()) return;
   if (axis->GetNbins() <= 0) return;

   Axis_t xmin, xmax;
   if (!FindNewAxisLimits(axis, x, xmin, xmax))
      return;

   //save a copy of this histogram
   TH1 *hold = (TH1*)Clone();
   hold->SetDirectory(0);
   //set new axis limits
   axis->SetLimits(xmin,xmax);

   Int_t  nbinsx = fXaxis.GetNbins();
   Int_t  nbinsy = fYaxis.GetNbins();
   Int_t  nbinsz = fZaxis.GetNbins();

   //now loop on all bins and refill
   Double_t err,cu;
   Axis_t bx,by,bz;
   Int_t errors = GetSumw2N();
   Int_t ix,iy,iz,ibin,binx,biny,binz,bin;
   Reset("ICE"); //reset only Integral, contents and Errors
   for (binz=1;binz<=nbinsz;binz++) {
      bz  = hold->GetZaxis()->GetBinCenter(binz);
      iz  = fZaxis.FindFixBin(bz);
      for (biny=1;biny<=nbinsy;biny++) {
         by  = hold->GetYaxis()->GetBinCenter(biny);
         iy  = fYaxis.FindFixBin(by);
         for (binx=1;binx<=nbinsx;binx++) {
            bx = hold->GetXaxis()->GetBinCenter(binx);
            ix  = fXaxis.FindFixBin(bx);
            bin = hold->GetBin(binx,biny,binz);
            ibin= GetBin(ix,iy,iz);
            cu  = hold->GetBinContent(bin);
            AddBinContent(ibin,cu);
            if (errors) {
               err = hold->GetBinError(bin);
               fSumw2.fArray[ibin] += err*err;
            }
         }
      }
   }
   delete hold;
}

//______________________________________________________________________________
void TH1::RecursiveRemove(TObject *obj)
{
// Recursively remove object from the list of functions

   if (fFunctions) {
      if (!fFunctions->TestBit(kInvalidObject)) fFunctions->RecursiveRemove(obj);
   }
}

//______________________________________________________________________________
void TH1::Scale(Double_t c1)
{
//   -*-*-*Multiply this histogram by a constant c1*-*-*-*-*-*-*-*-*
//         ========================================
//
//   this = c1*this
//
// Note that both contents and errors(if any) are scaled.
// This function uses the services of TH1::Add
//
// IMPORTANT NOTE: If you intend to use the errors of this histogram later
// you should call Sumw2 before making this operation.
// This is particularly important if you fit the histogram after TH1::Scale

   Double_t ent = fEntries;
   Add(this,this,c1,0);
   fEntries = ent;

   //if contours set, must also scale contours
   Int_t ncontours = GetContour();
   if (ncontours == 0) return;
   Double_t *levels = fContour.GetArray();
   for (Int_t i=0;i<ncontours;i++) {
      levels[i] *= c1;
   }
}


//______________________________________________________________________________
void TH1::SetDefaultBufferSize(Int_t buffersize)
{
// static function to set the default buffer size for automatic histograms.
// When an histogram is created with one of its axis lower limit greater
// or equal to its upper limit, the function SetBuffer is automatically
// called with the default buffer size.

   if (buffersize < 0) buffersize = 0;
   fgBufferSize = buffersize;
}

//______________________________________________________________________________
void TH1::SetTitle(const char *title)
{
   // Change (i.e. set) the title
   //   if title is of the form "stringt;stringx;stringy;stringz"
   //   the histogram title is set to stringt,
   //   the x axis title to stringx, the y axis title to stringy,etc

   fTitle = title;

   // Decode fTitle. It may contain X, Y and Z titles
   TString str1 = fTitle, str2;
   Int_t isc = str1.Index(";");
   Int_t lns = str1.Length();
   if (isc >=0 ) {
      fTitle = str1(0,isc);
      str1   = str1(isc+1, lns);
      isc    = str1.Index(";");
      if (isc >=0 ) {
         str2 = str1(0,isc);
         fXaxis.SetTitle(str2.Data());
         lns  = str1.Length();
         str1 = str1(isc+1, lns);
         isc  = str1.Index(";");
         if (isc >=0 ) {
            str2 = str1(0,isc);
            fYaxis.SetTitle(str2.Data());
            lns  = str1.Length();
            str1 = str1(isc+1, lns);
            fZaxis.SetTitle(str1.Data());
         } else {
            fYaxis.SetTitle(str1.Data());
         }
      } else {
         fXaxis.SetTitle(str1.Data());
      }
   }

   if (gPad && TestBit(kMustCleanup)) gPad->Modified();
}

// -------------------------------------------------------------------------
void  TH1::SmoothArray(Int_t nn, Double_t *xx, Int_t ntimes)
{
// smooth array xx, translation of Hbook routine hsmoof.F
// based on algorithm 353QH twice presented by J. Friedman
// in Proc.of the 1974 CERN School of Computing, Norway, 11-24 August, 1974.

   Int_t ii, jj, ik, jk, kk, nn1, nn2;
   Double_t hh[6] = {0,0,0,0,0,0};
   Double_t *yy = new Double_t[nn];
   Double_t *zz = new Double_t[nn];
   Double_t *rr = new Double_t[nn];

   for (Int_t pass=0;pass<ntimes;pass++) {
      // first copy original data into temp array

      for (ii = 0; ii < nn; ii++) {
         yy[ii] = xx[ii];
      }

//  do 353 i.e. running median 3, 5, and 3 in a single loop
      for  (kk = 1; kk <= 3; kk++)  {
         ik = 0;
         if  (kk == 2)  ik = 1;
         nn1 = ik + 2;
         nn2 = nn - ik - 1;
       // do all elements beside the first and last point for median 3
       //  and first two and last 2 for median 5
         for  (ii = nn1; ii <= nn2; ii++)  {
            for  (jj = 0; jj < 3; jj++)   {
               hh[jj] = yy[ii + jj - 1];
            }
            zz[ii] = TMath::Median(3 + 2*ik, hh);
         }

         if  (kk == 1)  {   // first median 3
// first point
            hh[0] = 3*yy[1] - 2*yy[2];
            hh[1] = yy[0];
            hh[2] = yy[2];
            zz[0] = TMath::Median(3, hh);
// last point
            hh[0] = yy[nn - 2];
            hh[1] = yy[nn - 1];
            hh[2] = 3*yy[nn - 2] - 2*yy[nn - 3];
            zz[nn - 1] = TMath::Median(3, hh);
         }
         if  (kk == 2)  {   //  median 5
  //  first point remains the same
            zz[0] = yy[0];
            for  (ii = 0; ii < 3; ii++) {
               hh[ii] = yy[ii];
            }
            zz[1] = TMath::Median(3, hh);
// last two points
            for  (ii = 0; ii < 3; ii++) {
               hh[ii] = yy[nn +nn2 -1 + ii];
            }
            zz[nn - 2] = TMath::Median(3, hh);
            zz[nn - 1] = yy[nn - 1];
         }
      }

// quadratic interpolation for flat segments
      nn2 = nn2 - 2;
      for (ii = nn1; ii <= nn2; ii++) {
         if  (zz[ii - 1] != zz[ii]) continue;
         if  (zz[ii] != zz[ii + 1]) continue;
         hh[0] = zz[ii - 2] - zz[ii];
         hh[1] = zz[ii + 2] - zz[ii];
         if  (hh[0] * hh[1] < 0) continue;
         jk = 0;
         if  ( TMath::Abs(hh[1]) > TMath::Abs(hh[0]) ) jk = -1;
         yy[ii] = -0.5*zz[ii - 2*jk] + zz[ii - jk]/0.75 + zz[ii + 2*jk] /6.;
         yy[ii + jk] = 0.5*(zz[ii + 2*jk] - zz[ii - 2*jk]) + zz[ii - jk];
      }

// running means
      for  (ii = 1; ii < nn - 1; ii++) {
         rr[ii] = 0.25*yy[ii - 1] + 0.5*yy[ii] + 0.25*yy[ii + 1];
      }
      rr[0] = yy[0];
      rr[nn - 1] = yy[nn - 1];

// now do the same for residuals

      for  (ii = 0; ii < nn; ii++)  {
         yy[ii] = xx[ii] - rr[ii];
      }

//  do 353 i.e. running median 3, 5, and 3 in a single loop
      for  (kk = 1; kk <= 3; kk++)  {
         ik = 0;
         if  (kk == 2)  ik = 1;
         nn1 = ik + 1;
         nn2 = nn - ik - 1;
       // do all elements beside the first and last point for median 3
       //  and first two and last 2 for median 5
         for  (ii = nn1; ii <= nn2; ii++)  {
            for  (jj = 0; jj < 3; jj++) {
               hh[jj] = yy[ii + jj - 1];
            }
            zz[ii] = TMath::Median(3 + 2*ik, hh);
         }

         if  (kk == 1)  {   // first median 3
// first point
            hh[0] = 3*yy[1] - 2*yy[2];
            hh[1] = yy[0];
            hh[2] = yy[2];
            zz[0] = TMath::Median(3, hh);
// last point
            hh[0] = yy[nn - 2];
            hh[1] = yy[nn - 1];
            hh[2] = 3*yy[nn - 2] - 2*yy[nn - 3];
            zz[nn - 1] = TMath::Median(3, hh);
         }
         if  (kk == 2)  {   //  median 5
//  first point remains the same
            zz[0] = yy[0];
            for  (ii = 0; ii < 3; ii++) {
               hh[ii] = yy[ii];
            }
            zz[1] = TMath::Median(3, hh);
// last two points
            for  (ii = 0; ii < 3; ii++) {
               hh[ii] = yy[nn - 3 + ii];
            }
            zz[nn - 2] = TMath::Median(3, hh);
            zz[nn - 1] = yy[nn - 1];
         }
      }

// quadratic interpolation for flat segments
      nn2 = nn2 - 1;
      for (ii = nn1 + 1; ii <= nn2; ii++) {
         if  (zz[ii - 1] != zz[ii]) continue;
         if  (zz[ii] != zz[ii + 1]) continue;
         hh[0] = zz[ii - 2] - zz[ii];
         hh[1] = zz[ii + 2] - zz[ii];
         if  (hh[0] * hh[1] < 0) continue;
         jk = 0;
         if  ( TMath::Abs(hh[1]) > TMath::Abs(hh[0]) ) jk = -1;
         yy[ii] = -0.5*zz[ii - 2*jk] + zz[ii - jk]/0.75 + zz[ii + 2*jk]/6.;
         yy[ii + jk] = 0.5*(zz[ii + 2*jk] - zz[ii - 2*jk]) + zz[ii - jk];
      }

// running means
      for  (ii = 1; ii <= nn - 1; ii++) {
         zz[ii] = 0.25*yy[ii - 1] + 0.5*yy[ii] + 0.25*yy[ii + 1];
      }
      zz[0] = yy[0];
      zz[nn - 1] = yy[nn - 1];

//  add smoothed xx and smoothed residuals

      for  (ii = 0; ii < nn; ii++) {
         if (xx[ii] < 0) xx[ii] = rr[ii] + zz[ii];
         else            xx[ii] = TMath::Abs(rr[ii] + zz[ii]);
      }
   }
   delete [] yy;
   delete [] zz;
   delete [] rr;
}


// ------------------------------------------------------------------------
void  TH1::Smooth(Int_t ntimes, Int_t firstbin, Int_t lastbin)
{
// Smooth bin contents of this histogram between firstbin and lastbin.
// (if firstbin=-1 and lastbin=-1 (default) all bins are smoothed.
// bin contents are replaced by their smooth values.
// Errors (if any) are not modified.
// algorithm can only be applied to 1-d histograms

   if (fDimension != 1) {
      Error("Smooth","Smooth only supported for 1-d histograms");
      return;
   }
   Int_t nbins = fXaxis.GetNbins();
   if (firstbin < 0) firstbin = 1;
   if (lastbin  < 0) lastbin  = nbins;
   if (lastbin  > nbins+1) lastbin  = nbins;
   nbins = lastbin - firstbin + 1;
   Double_t *xx = new Double_t[nbins];
   Int_t i;
   for (i=0;i<nbins;i++) {
      xx[i] = GetBinContent(i+firstbin);
   }

   TH1::SmoothArray(nbins,xx,ntimes);

   for (i=0;i<nbins;i++) {
      SetBinContent(i+firstbin,xx[i]);
   }
   delete [] xx;

   if (gPad) gPad->Modified();
}


// ------------------------------------------------------------------------
void  TH1::StatOverflows(Bool_t flag)
{
//  if flag=kTRUE, underflows and overflows are used by the Fill functions
//  in the computation of statistics (mean value, RMS).
//  By default, underflows or overflows are not used.

   fgStatOverflows = flag;
}

//_______________________________________________________________________
void TH1::Streamer(TBuffer &b)
{
//   -*-*-*-*-*-*-*Stream a class object*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
//                 =====================
   if (b.IsReading()) {
      UInt_t R__s, R__c;
      Version_t R__v = b.ReadVersion(&R__s, &R__c);
      if (R__v > 2) {
         TH1::Class()->ReadBuffer(b, this, R__v, R__s, R__c);

         fXaxis.SetParent(this);
         fYaxis.SetParent(this);
         fZaxis.SetParent(this);
         if (fgAddDirectory && !gROOT->ReadingObject()) {
            fDirectory = gDirectory;
            if (!gDirectory->GetList()->FindObject(this)) gDirectory->Append(this);
         }
         ResetBit(kCanDelete);
         return;
      }
      //process old versions before automatic schema evolution
      TNamed::Streamer(b);
      TAttLine::Streamer(b);
      TAttFill::Streamer(b);
      TAttMarker::Streamer(b);
      b >> fNcells;
      fXaxis.Streamer(b);
      fYaxis.Streamer(b);
      fZaxis.Streamer(b);
      fXaxis.SetParent(this);
      fYaxis.SetParent(this);
      fZaxis.SetParent(this);
      b >> fBarOffset;
      b >> fBarWidth;
      b >> fEntries;
      b >> fTsumw;
      b >> fTsumw2;
      b >> fTsumwx;
      b >> fTsumwx2;
      if (R__v < 2) {
         Float_t maximum, minimum, norm;
         Float_t *contour=0;
         b >> maximum; fMaximum = maximum;
         b >> minimum; fMinimum = minimum;
         b >> norm;    fNormFactor = norm;
         Int_t n = b.ReadArray(contour);
         fContour.Set(n);
         for (Int_t i=0;i<n;i++) fContour.fArray[i] = contour[i];
         delete [] contour;
      } else {
         b >> fMaximum;
         b >> fMinimum;
         b >> fNormFactor;
         fContour.Streamer(b);
      }
      fSumw2.Streamer(b);
      fOption.Streamer(b);
      fFunctions->Delete();
      fFunctions->Streamer(b);
      if (!gROOT->ReadingObject()) {
         fDirectory = gDirectory;
         if (!gDirectory->GetList()->FindObject(this)) gDirectory->Append(this);
      }
      b.CheckByteCount(R__s, R__c, TH1::IsA());

   } else {
      TH1::Class()->WriteBuffer(b,this);
   }
}

//______________________________________________________________________________
void TH1::Print(Option_t *option) const
{
//   -*-*-*-*-*Print some global quantities for this histogram*-*-*-*-*-*-*-*
//             ===============================================
//
//  If option "base" is given, number of bins and ranges are also printed
//  If option "range" is given, bin contents and errors are also printed
//                     for all bins in the current range (default 1-->nbins)
//  If option "all" is given, bin contents and errors are also printed
//                     for all bins including under and overflows.
//
   printf( "TH1.Print Name  = %s, Entries= %d, Total sum= %g\n",GetName(),Int_t(fEntries),GetSumOfWeights());
   TString opt = option;
   opt.ToLower();
   Int_t all;
   if      (opt.Contains("all"))   all = 0;
   else if (opt.Contains("range")) all = 1;
   else if (opt.Contains("base"))  all = 2;
   else                            return;

   Int_t bin, binx, biny, binz;
   Int_t firstx=0,lastx=0,firsty=0,lasty=0,firstz=0,lastz=0;
   if (all == 0) {
      lastx  = fXaxis.GetNbins()+1;
      if (fDimension > 1) lasty = fYaxis.GetNbins()+1;
      if (fDimension > 2) lastz = fZaxis.GetNbins()+1;
   } else {
      firstx = fXaxis.GetFirst(); lastx  = fXaxis.GetLast();
      if (fDimension > 1) {firsty = fYaxis.GetFirst(); lasty = fYaxis.GetLast();}
      if (fDimension > 2) {firstz = fZaxis.GetFirst(); lastz = fZaxis.GetLast();}
   }

   if (all== 2) {
       printf("          Title = %s\n", GetTitle());
       printf("          NbinsX= %d, xmin= %g, xmax=%g", fXaxis.GetNbins(), fXaxis.GetXmin(), fXaxis.GetXmax());
       if( fDimension > 1) printf(", NbinsY= %d, ymin= %g, ymax=%g", fYaxis.GetNbins(), fYaxis.GetXmin(), fYaxis.GetXmax());
       if( fDimension > 2) printf(", NbinsZ= %d, zmin= %g, zmax=%g", fZaxis.GetNbins(), fZaxis.GetXmin(), fZaxis.GetXmax());
       printf("\n");
       return;
   }

   Stat_t w,e;
   Axis_t x,y,z;
   if (fDimension == 1) {
      for (binx=firstx;binx<=lastx;binx++) {
         x = fXaxis.GetBinCenter(binx);
         w = GetBinContent(binx);
         e = GetBinError(binx);
         if(fSumw2.fN) printf(" fSumw[%d]=%g, x=%g, error=%g\n",binx,w,x,e);
         else          printf(" fSumw[%d]=%g, x=%g\n",binx,w,x);
      }
   }
   if (fDimension == 2) {
      for (biny=firsty;biny<=lasty;biny++) {
         y = fYaxis.GetBinCenter(biny);
         for (binx=firstx;binx<=lastx;binx++) {
            bin = GetBin(binx,biny);
            x = fXaxis.GetBinCenter(binx);
            w = GetBinContent(bin);
            e = GetBinError(bin);
            if(fSumw2.fN) printf(" fSumw[%d][%d]=%g, x=%g, y=%g, error=%g\n",binx,biny,w,x,y,e);
            else          printf(" fSumw[%d][%d]=%g, x=%g, y=%g\n",binx,biny,w,x,y);
         }
      }
   }
   if (fDimension == 3) {
      for (binz=firstz;binz<=lastz;binz++) {
         z = fZaxis.GetBinCenter(binz);
         for (biny=firsty;biny<=lasty;biny++) {
            y = fYaxis.GetBinCenter(biny);
            for (binx=firstx;binx<=lastx;binx++) {
               bin = GetBin(binx,biny,binz);
               x = fXaxis.GetBinCenter(binx);
               w = GetBinContent(bin);
               e = GetBinError(bin);
               if(fSumw2.fN) printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g, error=%g\n",binx,biny,binz,w,x,y,z,e);
               else          printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g\n",binx,biny,binz,w,x,y,z);
            }
         }
      }
   }
}

//______________________________________________________________________________
void TH1::Rebuild(Option_t *)
{
// Using the current bin info, recompute the arrays for contents and errors

   SetBinsLength();
   if (fSumw2.fN) {
      fSumw2.Set(fNcells);
   }
}

//______________________________________________________________________________
void TH1::Reset(Option_t *option)
{
//   -*-*-*-*-*-*Reset this histogram: contents, errors, etc*-*-*-*-*-*-*-*
//               ===========================================
//
// if option "ICE" is specified, resets only Integral, Contents and Errors.

   TString opt = option;
   opt.ToUpper();
   fSumw2.Reset();
   if (fIntegral) {delete [] fIntegral; fIntegral = 0;}

   if (opt.Contains("ICE")) return;
   if (fBuffer) BufferEmpty();
   fTsumw       = 0;
   fTsumw2      = 0;
   fTsumwx      = 0;
   fTsumwx2     = 0;
   fEntries     = 0;

   TObject *stats = fFunctions->FindObject("stats");
   fFunctions->Remove(stats);
   //special logic to support the case where the same object is
   //added multiple times in fFunctions.
   //This case happens when the same object is added with different
   //drawing modes
   TObject *obj;
   while ((obj  = fFunctions->First())) {
      while(fFunctions->Remove(obj));
      delete obj;
   }
   if(stats) fFunctions->Add(stats);
   fContour.Set(0);
}

//______________________________________________________________________________
void TH1::SavePrimitive(ofstream &out, Option_t *option)
{
    // Save primitive as a C++ statement(s) on output stream out

   Bool_t nonEqiX = kFALSE;
   Bool_t nonEqiY = kFALSE;
   Bool_t nonEqiZ = kFALSE;
   Int_t i;

   // Check if the histogram has equidistant X bins or not.  If not, we
   // create an array holding the bins.
   if (GetXaxis()->GetXbins()->fN && GetXaxis()->GetXbins()->fArray) {
      nonEqiX = kTRUE;
      out << "   Double_t xAxis[" << GetXaxis()->GetXbins()->fN
          << "] = {";
      for (i = 0; i < GetXaxis()->GetXbins()->fN; i++) {
         if (i != 0) out << ", ";
         out << GetXaxis()->GetXbins()->fArray[i];
      }
      out << "}; " << endl;
   }
   // If the histogram is 2 or 3 dimensional, check if the histogram
   // has equidistant Y bins or not.  If not, we create an array
   // holding the bins.
   if (fDimension > 1 && GetYaxis()->GetXbins()->fN &&
       GetYaxis()->GetXbins()->fArray) {
      nonEqiY = kTRUE;
      out << "   Double_t yAxis[" << GetYaxis()->GetXbins()->fN
           << "] = {";
      for (i = 0; i < GetYaxis()->GetXbins()->fN; i++) {
         if (i != 0) out << ", ";
         out << GetYaxis()->GetXbins()->fArray[i];
      }
      out << "}; " << endl;
   }
   // IF the histogram is 3 dimensional, check if the histogram
   // has equidistant Z bins or not.  If not, we create an array
   // holding the bins.
   if (fDimension > 2 && GetZaxis()->GetXbins()->fN &&
       GetZaxis()->GetXbins()->fArray) {
      nonEqiZ = kTRUE;
      out << "   Double_t zAxis[" << GetZaxis()->GetXbins()->fN
          << "] = {";
      for (i = 0; i < GetZaxis()->GetXbins()->fN; i++) {
         if (i != 0) out << ", ";
         out << GetZaxis()->GetXbins()->fArray[i];
      }
      out << "}; " << endl;
   }

   char quote = '"';
   out <<"   "<<endl;
   out <<"   "<<"TH1"<<" *";

   out << GetName() << " = new " << ClassName() << "(" << quote
       << GetName() << quote << "," << quote<< GetTitle() << quote
       << "," << GetXaxis()->GetNbins();
   if (nonEqiX)
      out << ", xAxis";
   else
      out << "," << GetXaxis()->GetXmin()
          << "," << GetXaxis()->GetXmax();
   if (fDimension > 1) {
      out << "," << GetYaxis()->GetNbins();
      if (nonEqiY)
         out << ", yAxis";
      else
         out << "," << GetYaxis()->GetXmin()
             << "," << GetYaxis()->GetXmax();
   }
   if (fDimension > 2) {
      out << "," << GetZaxis()->GetNbins();
      if (nonEqiZ)
         out << ", zAxis";
      else
         out << "," << GetZaxis()->GetXmin()
             << "," << GetZaxis()->GetXmax();
   }
   out << ");" << endl;

   // save bin contents
   Int_t bin;
   for (bin=0;bin<fNcells;bin++) {
      Double_t bc = GetBinContent(bin);
      if (bc) {
         out<<"   "<<GetName()<<"->SetBinContent("<<bin<<","<<bc<<");"<<endl;
      }
   }

   // save bin errors
   if (fSumw2.fN) {
      for (bin=0;bin<fNcells;bin++) {
         Double_t be = GetBinError(bin);
         if (be) {
            out<<"   "<<GetName()<<"->SetBinError("<<bin<<","<<be<<");"<<endl;
         }
      }
   }

   TH1::SavePrimitiveHelp(out, option);
}

//______________________________________________________________________________
void TH1::SavePrimitiveHelp(ofstream &out, Option_t *option)
{
    // helper function for the SavePrimitive functions from TH1
    // or classes derived from TH1, eg TProfile, TProfile2D.

   char quote = '"';
   if (TMath::Abs(GetBarOffset()) > 1e-5) {
      out<<"   "<<GetName()<<"->SetBarOffset("<<GetBarOffset()<<");"<<endl;
   }
   if (TMath::Abs(GetBarWidth()-1) > 1e-5) {
      out<<"   "<<GetName()<<"->SetBarWidth("<<GetBarWidth()<<");"<<endl;
   }
    if (fMinimum != -1111) {
      out<<"   "<<GetName()<<"->SetMinimum("<<fMinimum<<");"<<endl;
   }
   if (fMaximum != -1111) {
      out<<"   "<<GetName()<<"->SetMaximum("<<fMaximum<<");"<<endl;
   }
   if (fNormFactor != 0) {
      out<<"   "<<GetName()<<"->SetNormFactor("<<fNormFactor<<");"<<endl;
   }
   if (fEntries != 0) {
      out<<"   "<<GetName()<<"->SetEntries("<<fEntries<<");"<<endl;
   }
   if (fDirectory == 0) {
      out<<"   "<<GetName()<<"->SetDirectory(0);"<<endl;
   }
   if (TestBit(kNoStats)) {
      out<<"   "<<GetName()<<"->SetStats(0);"<<endl;
   }
   if (fOption.Length() != 0) {
      out<<"   "<<GetName()<<"->SetOption("<<quote<<fOption.Data()<<quote<<");"<<endl;
   }

   // save contour levels
   Int_t ncontours = GetContour();
   if (ncontours > 0) {
      out<<"   "<<GetName()<<"->SetContour("<<ncontours<<");"<<endl;
      for (Int_t bin=0;bin<ncontours;bin++) {
         out<<"   "<<GetName()<<"->SetContourLevel("<<bin<<","<<GetContourLevel(bin)<<");"<<endl;
      }
   }

   // save list of functions
   TObjOptLink *lnk = (TObjOptLink*)fFunctions->FirstLink();
   TObject *obj;
   while (lnk) {
      obj = lnk->GetObject();
      obj->SavePrimitive(out,"nodraw");
      if (obj->InheritsFrom("TF1")) {
         out<<"   "<<GetName()<<"->GetListOfFunctions()->Add("<<obj->GetName()<<");"<<endl;
      } else if (obj->InheritsFrom("TPaveStats")) {
         out<<"   "<<GetName()<<"->GetListOfFunctions()->Add(ptstats);"<<endl;
         out<<"   ptstats->SetParent("<<GetName()<<"->GetListOfFunctions());"<<endl;
      } else {
         out<<"   "<<GetName()<<"->GetListOfFunctions()->Add("<<obj->GetName()<<","<<quote<<lnk->GetOption()<<quote<<");"<<endl;
      }
      lnk = (TObjOptLink*)lnk->Next();
   }

   // save attributes
   SaveFillAttributes(out,GetName(),0,1001);
   SaveLineAttributes(out,GetName(),1,1,1);
   SaveMarkerAttributes(out,GetName(),1,1,1);
   fXaxis.SaveAttributes(out,GetName(),"->GetXaxis()");
   fYaxis.SaveAttributes(out,GetName(),"->GetYaxis()");
   fZaxis.SaveAttributes(out,GetName(),"->GetZaxis()");
   TString opt = option;
   opt.ToLower();
   if (!opt.Contains("nodraw")) {
      out<<"   "<<GetName()<<"->Draw("
      <<quote<<option<<quote<<");"<<endl;
   }
}

//______________________________________________________________________________
void TH1::UseCurrentStyle()
{
//   Copy current attributes from/to current style

   if (gStyle->IsReading()) {
      fXaxis.ResetAttAxis("X");
      fYaxis.ResetAttAxis("Y");
      fZaxis.ResetAttAxis("Z");
      SetBarOffset(gStyle->GetBarOffset());
      SetBarWidth(gStyle->GetBarWidth());
      SetFillColor(gStyle->GetHistFillColor());
      SetFillStyle(gStyle->GetHistFillStyle());
      SetLineColor(gStyle->GetHistLineColor());
      SetLineStyle(gStyle->GetHistLineStyle());
      SetLineWidth(gStyle->GetHistLineWidth());
      SetMarkerColor(gStyle->GetMarkerColor());
      SetMarkerStyle(gStyle->GetMarkerStyle());
      SetMarkerSize(gStyle->GetMarkerSize());
      Int_t dostat = gStyle->GetOptStat();
      if (gStyle->GetOptFit() && !dostat) dostat = 1000000001;
      SetStats(dostat);
   } else {
      gStyle->SetBarOffset(fBarOffset);
      gStyle->SetBarWidth(fBarWidth);
      gStyle->SetHistFillColor(GetFillColor());
      gStyle->SetHistFillStyle(GetFillStyle());
      gStyle->SetHistLineColor(GetLineColor());
      gStyle->SetHistLineStyle(GetLineStyle());
      gStyle->SetHistLineWidth(GetLineWidth());
      gStyle->SetMarkerColor(GetMarkerColor());
      gStyle->SetMarkerStyle(GetMarkerStyle());
      gStyle->SetMarkerSize(GetMarkerSize());
      gStyle->SetOptStat(TestBit(kNoStats));
   }
}

//______________________________________________________________________________
Double_t TH1::GetMean(Int_t axis) const
{
//  For axis = 1,2 or 3 returns the mean value of the histogram along
//  X,Y or Z axis.
//  For axis = 11, 12, 13 returns the standard error of the mean value
//  of the histogram along X, Y or Z axis
//
//  Note that the mean value/RMS is computed using the bins in the currently
//  defined range (see TAxis::SetRange). By default the range includes
//  all bins from 1 to nbins included, excluding underflows and overflows.
//  To force the underflows and overflows in the computation, one must
//  call the static function TH1::StatOverflows(kTRUE) before filling
//  the histogram.



//   -*-*-*-*-*-*Return mean value of this histogram along the X axis*-*-*-*-*
//               ====================================================
//  Note that the mean value/RMS is computed using the bins in the currently
//  defined range (see TAxis::SetRange). By default the range includes
//  all bins from 1 to nbins included, excluding underflows and overflows.
//  To force the underflows and overflows in the computation, one must
//  call the static function TH1::StatOverflows(kTRUE) before filling
//  the histogram.

   if (axis<1 || axis>3&&axis<11 || axis>13) return 0;
   Stat_t stats[kNstat];
   for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
   GetStats(stats);
   if (stats[0] == 0) return 0;
   if (axis<10){
      Int_t ax[3] = {2,4,7};
      return stats[ax[axis-1]]/stats[0];
   } else {
      Double_t rms = GetRMS(axis-10);
      return (rms/TMath::Sqrt(stats[0]));
   }
}

//______________________________________________________________________________
Double_t TH1::GetMeanError(Int_t axis) const
{
//   -*-*-*-*-*-*Return standard error of mean of this histogram along the X axis*-*-*-*-*
//               ====================================================
//  Note that the mean value/RMS is computed using the bins in the currently
//  defined range (see TAxis::SetRange). By default the range includes
//  all bins from 1 to nbins included, excluding underflows and overflows.
//  To force the underflows and overflows in the computation, one must
//  call the static function TH1::StatOverflows(kTRUE) before filling
//  the histogram.
//  Also note, that although the definition of standard error doesn't include the
//  assumption of normality, many uses of this feature implicitly assume it.

   return GetMean(axis+10);
}

//______________________________________________________________________________
Double_t TH1::GetRMS(Int_t axis) const
{
//  For axis = 1,2 or 3 returns the Sigma value of the histogram along
//  X, Y or Z axis
//  For axis = 11, 12 or 13 returns the error of RMS estimation along
//  X, Y or Z axis for Normal distribution
//
//     Note that the mean value/sigma is computed using the bins in the currently
//  defined range (see TAxis::SetRange). By default the range includes
//  all bins from 1 to nbins included, excluding underflows and overflows.
//  To force the underflows and overflows in the computation, one must
//  call the static function TH1::StatOverflows(kTRUE) before filling
//  the histogram.
//  Note that this function returns the Standard Deviation (Sigma)
//  of the distribution (not RMS).
//  The Sigma estimate is computed as Sqrt((1/N)*(Sum(x_i-x_mean)^2))
//  The name "RMS" was introduced many years ago (Hbook/PAW times).
//  We kept the name for continuity.

   if (axis<1 || axis>3&&axis<11 || axis>13) return 0;

   Stat_t x, rms2, stats[kNstat];
   for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
   GetStats(stats);
   if (stats[0] == 0) return 0;
   Int_t ax[3] = {2,4,7};
   Int_t axm = ax[axis%10 - 1];
   x    = stats[axm]/stats[0];
   rms2 = TMath::Abs(stats[axm+1]/stats[0] -x*x);
   if (axis<10)
      return TMath::Sqrt(rms2);
   else 
      return TMath::Sqrt(rms2/(2*stats[0]));
}

//______________________________________________________________________________
Double_t TH1::GetRMSError(Int_t axis) const
{
//  Return error of RMS estimation for Normal distribution
//
//  Note that the mean value/RMS is computed using the bins in the currently
//  defined range (see TAxis::SetRange). By default the range includes
//  all bins from 1 to nbins included, excluding underflows and overflows.
//  To force the underflows and overflows in the computation, one must
//  call the static function TH1::StatOverflows(kTRUE) before filling
//  the histogram.
//  Value returned is standard deviation of sample standard deviation.

   return GetRMS(axis+10);
}

//______________________________________________________________________________
Double_t TH1::GetSkewness(Int_t axis) const
{
   //For axis = 1, 2 or 3 returns skewness of the histogram along x, y or z axis. 
   //For axis = 11, 12 or 13 returns the approximate standard error of skewness
   //of the histogram along x, y or z axis 
   //Note, that since third and fourth moment are not calculated
   //at the fill time, skewness and its standard error are computed bin by bin

   const TAxis *ax;
   if (axis==1 || axis==11) ax = &fXaxis;
   else if (axis==2 || axis==12) ax = &fYaxis;
   else if (axis==3 || axis==13) ax = &fZaxis;
   else {
      Error("GetSkewness", "illegal value of parameter");
      return 0;
   }

   if (axis < 10) {
      //compute skewness
      Double_t x, w, mean, rms, rms3, sum=0;
      mean = GetMean(axis);
      rms = GetRMS(axis);
      rms3 = rms*rms*rms;
      Int_t bin;
      Double_t np=0;

      for (bin=ax->GetFirst(); bin<=ax->GetLast(); bin++){
         x = GetBinCenter(bin);
         w = GetBinContent(bin);
         np+=w;
         sum+=w*(x-mean)*(x-mean)*(x-mean);
      }
      sum/=np*rms3;
      return sum;
   } else {
      //compute standard error of skewness
      Int_t nbins = ax->GetNbins();
      return TMath::Sqrt(6./nbins);
   }
}

//______________________________________________________________________________
Double_t TH1::GetKurtosis(Int_t axis) const
{
   //For axis =1, 2 or 3 returns kurtosis of the histogram along x, y or z axis. 
   //Kurtosis(gaussian(0, 1)) = 0.
   //For axis =11, 12 or 13 returns the approximate standard error of kurtosis 
   //of the histogram along x, y or z axis 
   //Note, that since third and fourth moment are not calculated
   //at the fill time, kurtosis and its standard error are computed bin by bin
   
   const TAxis *ax;
   if (axis==1 || axis==11) ax = &fXaxis;
   else if (axis==2 || axis==12) ax = &fYaxis;
   else if (axis==3 || axis==13) ax = &fZaxis;
   else {
      Error("GetKurtosis", "illegal value of parameter");
      return 0;
   }
   if (axis < 10){
      Double_t x, w, mean, rms, rms4, sum=0;
      mean = GetMean(axis);
      rms = GetRMS(axis);
      rms4 = rms*rms*rms*rms;
      Int_t bin;
      Double_t np=0;
      for (bin=ax->GetFirst(); bin<=ax->GetLast(); bin++){
         x = GetBinCenter(bin);
         w = GetBinContent(bin);
         np+=w;
         sum+=w*(x-mean)*(x-mean)*(x-mean)*(x-mean);
      }
      sum/=np*rms4;
      return sum-3;
   } else {
      Int_t nbins = ax->GetNbins();
      return TMath::Sqrt(24./nbins);
   }
}


//______________________________________________________________________________
void TH1::GetStats(Stat_t *stats) const
{
// fill the array stats from the contents of this histogram
// The array stats must be correctly dimensionned in the calling program.
// stats[0] = sumw
// stats[1] = sumw2
// stats[2] = sumwx
// stats[3] = sumwx2
//
// If no axis-subrange is specified (via TAxis::SetRange), the array stats
// is simply a copy of the statistics quantities computed at filling time.
// If a sub-range is specified, the function recomputes these quantities
// from the bin contents in the current axis range.
//
//  Note that the mean value/RMS is computed using the bins in the currently
//  defined range (see TAxis::SetRange). By default the range includes
//  all bins from 1 to nbins included, excluding underflows and overflows.
//  To force the underflows and overflows in the computation, one must
//  call the static function TH1::StatOverflows(kTRUE) before filling
//  the histogram.

   if (fBuffer) ((TH1*)this)->BufferEmpty();

   // Loop on bins (possibly including underflows/overflows)
   Int_t bin, binx;
   Stat_t w,err;
   Axis_t x;
   if (fTsumw == 0 || fXaxis.TestBit(TAxis::kAxisRange)) {
      for (bin=0;bin<4;bin++) stats[bin] = 0;
      for (binx=fXaxis.GetFirst();binx<=fXaxis.GetLast();binx++) {
         x   = fXaxis.GetBinCenter(binx);
         w   = TMath::Abs(GetBinContent(binx));
         err = TMath::Abs(GetBinError(binx));
         stats[0] += w;
         stats[1] += err*err;
         stats[2] += w*x;
         stats[3] += w*x*x;
      }
   } else {
      stats[0] = fTsumw;
      stats[1] = fTsumw2;
      stats[2] = fTsumwx;
      stats[3] = fTsumwx2;
   }
}

//______________________________________________________________________________
void TH1::PutStats(Stat_t *stats)
{
   // Replace current statistics with the values in array stats

   fTsumw   = stats[0];
   fTsumw2  = stats[1];
   fTsumwx  = stats[2];
   fTsumwx2 = stats[3];
}

//______________________________________________________________________________
Stat_t TH1::GetSumOfWeights() const
{
//   -*-*-*-*-*-*Return the sum of weights excluding under/overflows*-*-*-*-*
//               ===================================================
  Int_t bin,binx,biny,binz;
  Stat_t sum =0;
  for(binz=1; binz<=fZaxis.GetNbins(); binz++) {
     for(biny=1; biny<=fYaxis.GetNbins(); biny++) {
        for(binx=1; binx<=fXaxis.GetNbins(); binx++) {
           bin = GetBin(binx,biny,binz);
           sum += GetBinContent(bin);
        }
     }
  }
  return sum;
}


//______________________________________________________________________________
Stat_t TH1::Integral(Option_t *option) const
{
//Return integral of bin contents. Only bins in the bins range are considered.
// By default the integral is computed as the sum of bin contents in the range.
// if option "width" is specified, the integral is the sum of
// the bin contents multiplied by the bin width in x.

   return Integral(fXaxis.GetFirst(),fXaxis.GetLast(),option);
}

//______________________________________________________________________________
Stat_t TH1::Integral(Int_t binx1, Int_t binx2, Option_t *option) const
{
//Return integral of bin contents between binx1 and binx2 for a 1-D histogram
// By default the integral is computed as the sum of bin contents in the range.
// if option "width" is specified, the integral is the sum of
// the bin contents multiplied by the bin width in x.

   if (binx1 < 0) binx1 = 0;
   Stat_t integral = 0;

//   - Loop on bins in specified range
   TString opt = option;
   opt.ToLower();
   Bool_t width = kFALSE;
   if (opt.Contains("width")) width = kTRUE;
   Int_t binx;
   for (binx=binx1;binx<=binx2;binx++) {
      if (width) integral += GetBinContent(binx)*fXaxis.GetBinWidth(binx);
      else       integral += GetBinContent(binx);
   }
   return integral;
}

//______________________________________________________________________________
Double_t TH1::KolmogorovTest(const TH1 *h2, Option_t *option) const
{
//  Statistical test of compatibility in shape between
//  THIS histogram and h2, using Kolmogorov test.
//
//     Default: Ignore under- and overflow bins in comparison
//
//     option is a character string to specify options
//         "U" include Underflows in test  (also for 2-dim)
//         "O" include Overflows     (also valid for 2-dim)
//         "N" include comparison of normalizations
//         "D" Put out a line of "Debug" printout
//         "M" Return the Maximum Kolmogorov distance instead of prob
//         "X" Run the pseudo experiments post-processor with the following procedure:
//             make pseudoexperiments based on random values from the parent
//             distribution and compare the KS distance of the pseudoexperiment
//             to the parent distribution. Bin the KS distances in a histogram,
//             and then take the integral of all the KS values above the value
//             obtained from the original data to Monte Carlo distribution.
//             The number of pseudo-experiments nEXPT is currently fixed at 1000.
//             The function returns the integral.
//             (thanks to Ben Kilminster to submit this procedure). Note that
//             this option "X" is much slower.
//
//   The returned function value is the probability of test
//       (much less than one means NOT compatible)
//
//  Code adapted by Rene Brun from original HBOOK routine HDIFF
//
//  NOTE1
//  A good description of the Kolmogorov test can be seen at:
//    http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm 
//
//  NOTE2
//  see also alternative function TH1::Chi2Test
//  The Kolmogorov test is assumed to give better results than Chi2Test
//  in case of histograms with low statistics.
//
//  NOTE3 (Jan Conrad, Fred James)
//  "The returned value PROB is calculated such that it will be
//  uniformly distributed between zero and one for compatible histograms,
//  provided the data are not binned (or the number of bins is very large
//  compared with the number of events). Users who have access to unbinned
//  data and wish exact confidence levels should therefore not put their data
//  into histograms, but should call directly TMath::KolmogorovTest. On
//  the other hand, since TH1 is a convenient way of collecting data and
//  saving space, this function has been provided. However, the values of
//  PROB for binned data will be shifted slightly higher than expected,
//  depending on the effects of the binning. For example, when comparing two
//  uniform distributions of 500 events in 100 bins, the values of PROB,
//  instead of being exactly uniformly distributed between zero and one, have
//  a mean value of about 0.56. We can apply a useful
//  rule: As long as the bin width is small compared with any significant
//  physical effect (for example the experimental resolution) then the binning
//  cannot have an important effect. Therefore, we believe that for all
//  practical purposes, the probability value PROB is calculated correctly
//  provided the user is aware that:  
//     1. The value of PROB should not be expected to have exactly the correct
//  distribution for binned data.
//     2. The user is responsible for seeing to it that the bin widths are
//  small compared with any physical phenomena of interest.
//     3. The effect of binning (if any) is always to make the value of PROB
//  slightly too big. That is, setting an acceptance criterion of (PROB>0.05
//  will assure that at most 5% of truly compatible histograms are rejected,
//  and usually somewhat less."

   TString opt = option;
   opt.ToUpper();

   Double_t prob = 0;
   TH1 *h1 = (TH1*)this;
   if (h2 == 0) return 0;
   TAxis *axis1 = h1->GetXaxis();
   TAxis *axis2 = h2->GetXaxis();
   Int_t ncx1   = axis1->GetNbins();
   Int_t ncx2   = axis2->GetNbins();

     // Check consistency of dimensions
   if (h1->GetDimension() != 1 || h2->GetDimension() != 1) {
      Error("KolmogorovTest","Histograms must be 1-D\n");
      return 0;
   }

     // Check consistency in number of channels
   if (ncx1 != ncx2) {
      Error("KolmogorovTest","Number of channels is different, %d and %d\n",ncx1,ncx2);
      return 0;
   }

     // Check consistency in channel edges
   Double_t difprec = 1e-5;
   Double_t diff1 = TMath::Abs(axis1->GetXmin() - axis2->GetXmin());
   Double_t diff2 = TMath::Abs(axis1->GetXmax() - axis2->GetXmax());
   if (diff1 > difprec || diff2 > difprec) {
      Error("KolmogorovTest","histograms with different binning");
      return 0;
   }

   Bool_t afunc1 = kFALSE;
   Bool_t afunc2 = kFALSE;
   Double_t sum1 = 0, sum2 = 0;
   Double_t ew1, ew2, w1 = 0, w2 = 0;
   Int_t bin;
   for (bin=1;bin<=ncx1;bin++) {
      sum1 += h1->GetBinContent(bin);
      sum2 += h2->GetBinContent(bin);
      ew1   = h1->GetBinError(bin);
      ew2   = h2->GetBinError(bin);
      w1   += ew1*ew1;
      w2   += ew2*ew2;
   }
   if (sum1 == 0) {
      Error("KolmogorovTest","Histogram1 %s integral is zero\n",h1->GetName());
      return 0;
   }
   if (sum2 == 0) {
      Error("KolmogorovTest","Histogram2 %s integral is zero\n",h2->GetName());
      return 0;
   }
   Double_t tsum1 = sum1;
   Double_t tsum2 = sum2;
   if (opt.Contains("U")) {
      tsum1 += h1->GetBinContent(0);
      tsum2 += h2->GetBinContent(0);
   }
   if (opt.Contains("O")) {
      tsum1 += h1->GetBinContent(ncx1+1);
      tsum2 += h2->GetBinContent(ncx1+1);
   }

     // Check if histograms are weighted.
     // If number of entries = number of channels, probably histograms were
     // not filled via Fill(), but via SetBinContent()
   Double_t ne1 = h1->GetEntries();
   Double_t ne2 = h2->GetEntries();
     // look at first histogram
   Double_t difsum1 = (ne1-tsum1)/tsum1;
   Double_t esum1 = sum1;
   if (difsum1 > difprec && Int_t(ne1) != ncx1) {
      if (opt.Contains("U") || opt.Contains("O")) {
         Warning("KolmogorovTest","U/O option with weighted events for hist:%s\n",h1->GetName());
      }
      if (h1->GetSumw2N() == 0) {
         Warning("KolmogorovTest","Weighted events and no Sumw2, hist:%s\n",h1->GetName());
      } else {
         esum1 = sum1*sum1/w1;  //number of equivalent entries
      }
   }
     // look at second histogram
   Double_t difsum2 = (ne2-tsum2)/tsum2;
   Double_t esum2   = sum2;
   if (difsum2 > difprec && Int_t(ne2) != ncx1) {
      if (opt.Contains("U") || opt.Contains("O")) {
         Warning("KolmogorovTest","U/O option with weighted events for hist:%s\n",h2->GetName());
      }
      if (h2->GetSumw2N() == 0) {
         Warning("KolmogorovTest","Weighted events and no Sumw2, hist:%s\n",h2->GetName());
      } else {
         esum2 = sum2*sum2/w2;  //number of equivalent entries
      }
   }

   Double_t s1 = 1/tsum1;
   Double_t s2 = 1/tsum2;

      // Find largest difference for Kolmogorov Test
   Double_t dfmax =0, rsum1 = 0, rsum2 = 0;

   Int_t first = 1;
   Int_t last  = ncx1;
   if (opt.Contains("U")) first = 0;
   if (opt.Contains("O")) last  = ncx1+1;
   for (bin=first;bin<=last;bin++) {
      rsum1 += s1*h1->GetBinContent(bin);
      rsum2 += s2*h2->GetBinContent(bin);
      dfmax = TMath::Max(dfmax,TMath::Abs(rsum1-rsum2));
   }

      // Get Kolmogorov probability
   Double_t z, prb1=0, prb2=0, prb3=0;
   if (afunc1)      z = dfmax*TMath::Sqrt(esum2);
   else if (afunc2) z = dfmax*TMath::Sqrt(esum1);
   else             z = dfmax*TMath::Sqrt(esum1*esum2/(esum1+esum2));

   prob = TMath::KolmogorovProb(z);

   if (opt.Contains("N")) {
      // Combine probabilities for shape and normalization,
      prb1 = prob;
      Double_t resum1 = esum1;  if (afunc1) resum1 = 0;
      Double_t resum2 = esum2;  if (afunc2) resum2 = 0;
      Double_t d12    = esum1-esum2;
      Double_t chi2   = d12*d12/(resum1+resum2);
      prb2 = TMath::Prob(chi2,1);
      // see Eadie et al., section 11.6.2
      if (prob > 0 && prb2 > 0) prob *= prb2*(1-TMath::Log(prob*prb2));
      else                      prob = 0;
   }
      // X option. Pseudo-experiments post-processor to determine KS probability
   const Int_t nEXPT = 1000;
   if (opt.Contains("X")) {
      Double_t dSEXPT;
      Bool_t addStatus = fgAddDirectory;
      fgAddDirectory = kFALSE;
      TH1F *hDistValues = new TH1F("hDistValues","KS distances",200,0,1);
      TH1 *hExpt = (TH1*)Clone();
      fgAddDirectory = addStatus;
      // make nEXPT experiments (this should be a parameter)
      for (Int_t i=0; i < nEXPT; i++) {
         hExpt->Reset();
         hExpt->FillRandom(h1,(Int_t)ne2);
         dSEXPT = KolmogorovTest(hExpt,"M");
         hDistValues->Fill(dSEXPT);
      }
      prb3 = hDistValues->Integral(hDistValues->FindBin(dfmax),200)/hDistValues->Integral();
      delete hDistValues;
      delete hExpt;
   }

      // debug printout
   if (opt.Contains("D")) {
      printf(" Kolmo Prob  h1 = %s, sum1=%g\n",h1->GetName(),sum1);
      printf(" Kolmo Prob  h2 = %s, sum2=%g\n",h2->GetName(),sum2);
      printf(" Kolmo Prob     = %g, Max Dist = %g\n",prob,dfmax);
      if (opt.Contains("N"))
      printf(" Kolmo Prob     = %f for shape alone, =%f for normalisation alone\n",prb1,prb2);
      if (opt.Contains("X"))
      printf(" Kolmo Prob     = %f with %d pseudo-experiments\n",prb3,nEXPT);
   }
      // This numerical error condition should never occur:
   if (TMath::Abs(rsum1-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h1=%s\n",h1->GetName());
   if (TMath::Abs(rsum2-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h2=%s\n",h2->GetName());

   if(opt.Contains("M"))      return dfmax;
   else if(opt.Contains("X")) return prb3;
   else                       return prob;
}

//______________________________________________________________________________
void TH1::SetContent(const Stat_t *content)
{
//   -*-*-*-*-*-*Replace bin contents by the contents of array content*-*-*-*
//               =====================================================
   Int_t bin;
   Stat_t bincontent;
   for (bin=0; bin<fNcells; bin++) {
      bincontent = *(content + bin);
      SetBinContent(bin, bincontent);
   }
}

//______________________________________________________________________________
Int_t TH1::GetContour(Double_t *levels)
{
//  Return contour values into array levels if pointer levels is non zero
//
//  The function returns the number of contour levels.
//  see GetContourLevel to return one contour only
//

  Int_t nlevels = fContour.fN;
  if (levels) {
     if (nlevels == 0) {
        nlevels = 20;
        SetContour(nlevels);
     } else {
        if (TestBit(kUserContour) == 0) SetContour(nlevels);
     }
     for (Int_t level=0; level<nlevels; level++) levels[level] = fContour.fArray[level];
  }
  return nlevels;
}

//______________________________________________________________________________
Double_t TH1::GetContourLevel(Int_t level) const
{
// Return value of contour number level
// see GetContour to return the array of all contour levels

  if (level <0 || level >= fContour.fN) return 0;
  Double_t zlevel = fContour.fArray[level];
  return zlevel;
}

//______________________________________________________________________________
Double_t TH1::GetContourLevelPad(Int_t level) const
{
// Return the value of contour number "level" in Pad coordinates ie: if the Pad
// is in log scale along Z it returns le log of the contour level value.
// see GetContour to return the array of all contour levels

  if (level <0 || level >= fContour.fN) return 0;
  Double_t zlevel = fContour.fArray[level];

  // In case of user defined contours and Pad in log scale along Z,
  // fContour.fArray doesn't contain the log of the contour whereas it does
  // in case of equidistant contours.
  if (gPad && gPad->GetLogz() && TestBit(kUserContour)) {
     if (zlevel <= 0) return 0;
     zlevel = TMath::Log10(zlevel);
  }
  return zlevel;
}

//______________________________________________________________________________
void TH1::SetBuffer(Int_t buffersize, Option_t * /*option*/)
{
// set the maximum number of entries to be kept in the buffer

   if (fBuffer) {
      BufferEmpty();
      delete [] fBuffer;
      fBuffer = 0;
   }
   if (buffersize <= 0) {
      fBufferSize = 0;
      return;
   }
   if (buffersize < 100) buffersize = 100;
   fBufferSize = 1 + buffersize*(fDimension+1);
   fBuffer = new Double_t[fBufferSize];
   memset(fBuffer,0,8*fBufferSize);
}

//______________________________________________________________________________
void TH1::SetContour(Int_t  nlevels, const Double_t *levels)
{
//   -*-*-*-*-*-*Set the number and values of contour levels*-*-*-*-*-*-*-*-*
//               ===========================================
//
//  By default the number of contour levels is set to 20.
//
//  if argument levels = 0 or missing, equidistant contours are computed
//

  Int_t level;
  ResetBit(kUserContour);
  if (nlevels <=0 ) {
     fContour.Set(0);
     return;
  }
  fContour.Set(nlevels);

//   -  Contour levels are specified
  if (levels) {
     SetBit(kUserContour);
     for (level=0; level<nlevels; level++) fContour.fArray[level] = levels[level];
  } else {
//   - contour levels are computed automatically as equidistant contours
     Double_t zmin = GetMinimum();
     Double_t zmax = GetMaximum();
     if ((zmin == zmax) && (zmin != 0)) {
        zmax += 0.01*TMath::Abs(zmax);
        zmin -= 0.01*TMath::Abs(zmin);
     }
     Double_t dz   = (zmax-zmin)/Double_t(nlevels);
     if (gPad && gPad->GetLogz()) {
        if (zmax <= 0) return;
        if (zmin <= 0) zmin = 0.001*zmax;
        zmin = TMath::Log10(zmin);
        zmax = TMath::Log10(zmax);
        dz   = (zmax-zmin)/Double_t(nlevels);
     }
     for (level=0; level<nlevels; level++) {
        fContour.fArray[level] = zmin + dz*Double_t(level);
     }
  }
}

//______________________________________________________________________________
void TH1::SetContourLevel(Int_t level, Double_t value)
{
//   -*-*-*-*-*-*-*-*-*Set value for one contour level*-*-*-*-*-*-*-*-*-*-*-*
//                     ===============================
  if (level <0 || level >= fContour.fN) return;
  SetBit(kUserContour);
  fContour.fArray[level] = value;
}

//______________________________________________________________________________
Double_t TH1::GetMaximum(Double_t maxval) const
{
//  Return maximum value smaller than maxval of bins in the range*-*-*-*-*-*

  if (fMaximum != -1111) return fMaximum;
  Int_t bin, binx, biny, binz;
  Int_t xfirst  = fXaxis.GetFirst();
  Int_t xlast   = fXaxis.GetLast();
  Int_t yfirst  = fYaxis.GetFirst();
  Int_t ylast   = fYaxis.GetLast();
  Int_t zfirst  = fZaxis.GetFirst();
  Int_t zlast   = fZaxis.GetLast();
  Double_t maximum = -FLT_MAX, value;
  for (binz=zfirst;binz<=zlast;binz++) {
     for (biny=yfirst;biny<=ylast;biny++) {
        for (binx=xfirst;binx<=xlast;binx++) {
           bin = GetBin(binx,biny,binz);
           value = GetBinContent(bin);
           if (value > maximum && value < maxval) maximum = value;
        }
     }
  }
  return maximum;
}

//______________________________________________________________________________
Int_t TH1::GetMaximumBin() const
{
//   -*-*-*-*-*Return location of bin with maximum value in the range*-*
//             ======================================================
  Int_t locmax, locmay, locmaz;
  return GetMaximumBin(locmax, locmay, locmaz);
}

//______________________________________________________________________________
Int_t TH1::GetMaximumBin(Int_t &locmax, Int_t &locmay, Int_t &locmaz) const
{
//   -*-*-*-*-*Return location of bin with maximum value in the range*-*
//             ======================================================
  Int_t bin, binx, biny, binz;
  Int_t locm;
  Int_t xfirst  = fXaxis.GetFirst();
  Int_t xlast   = fXaxis.GetLast();
  Int_t yfirst  = fYaxis.GetFirst();
  Int_t ylast   = fYaxis.GetLast();
  Int_t zfirst  = fZaxis.GetFirst();
  Int_t zlast   = fZaxis.GetLast();
  Double_t maximum = -FLT_MAX, value;
  locm = locmax = locmay = locmaz = 0;
  for (binz=zfirst;binz<=zlast;binz++) {
     for (biny=yfirst;biny<=ylast;biny++) {
        for (binx=xfirst;binx<=xlast;binx++) {
           bin = GetBin(binx,biny,binz);
           value = GetBinContent(bin);
           if (value > maximum) {
              maximum = value;
              locm    = bin;
              locmax  = binx;
              locmay  = biny;
              locmaz  = binz;
           }
        }
     }
  }
  return locm;
}

//______________________________________________________________________________
Double_t TH1::GetMinimum(Double_t minval) const
{
//  Return minimum value greater than minval of bins in the range

  if (fMinimum != -1111) return fMinimum;
  Int_t bin, binx, biny, binz;
  Int_t xfirst  = fXaxis.GetFirst();
  Int_t xlast   = fXaxis.GetLast();
  Int_t yfirst  = fYaxis.GetFirst();
  Int_t ylast   = fYaxis.GetLast();
  Int_t zfirst  = fZaxis.GetFirst();
  Int_t zlast   = fZaxis.GetLast();
  Double_t minimum=FLT_MAX, value;
  for (binz=zfirst;binz<=zlast;binz++) {
     for (biny=yfirst;biny<=ylast;biny++) {
        for (binx=xfirst;binx<=xlast;binx++) {
           bin = GetBin(binx,biny,binz);
           value = GetBinContent(bin);
           if (value < minimum && value > minval) minimum = value;
        }
     }
  }
  return minimum;
}

//______________________________________________________________________________
Int_t TH1::GetMinimumBin() const
{
//   -*-*-*-*-*Return location of bin with minimum value in the range*-*
//             ======================================================
  Int_t locmix, locmiy, locmiz;
  return GetMinimumBin(locmix, locmiy, locmiz);
}

//______________________________________________________________________________
Int_t TH1::GetMinimumBin(Int_t &locmix, Int_t &locmiy, Int_t &locmiz) const
{
//   -*-*-*-*-*Return location of bin with minimum value in the range*-*
//             ======================================================
  Int_t bin, binx, biny, binz;
  Int_t locm;
  Int_t xfirst  = fXaxis.GetFirst();
  Int_t xlast   = fXaxis.GetLast();
  Int_t yfirst  = fYaxis.GetFirst();
  Int_t ylast   = fYaxis.GetLast();
  Int_t zfirst  = fZaxis.GetFirst();
  Int_t zlast   = fZaxis.GetLast();
  Double_t minimum = FLT_MAX, value;
  locm = locmix = locmiy = locmiz = 0;
  for (binz=zfirst;binz<=zlast;binz++) {
     for (biny=yfirst;biny<=ylast;biny++) {
        for (binx=xfirst;binx<=xlast;binx++) {
           bin = GetBin(binx,biny,binz);
           value = GetBinContent(bin);
           if (value < minimum) {
              minimum = value;
              locm    = bin;
              locmix  = binx;
              locmiy  = biny;
              locmiz  = binz;
           }
        }
     }
  }
  return locm;
}

//______________________________________________________________________________
void TH1::SetBins(Int_t nx, Axis_t xmin, Axis_t xmax)
{
//   -*-*-*-*-*-*-*Redefine  x axis parameters*-*-*-*-*-*-*-*-*-*-*-*
//                 ===========================
// The X axis parameters are modified.
// The bins content array is resized
// if errors (Sumw2) the errors array is resized
// The previous bin contents are lost
// To change only the axis limits, see TAxis::SetRange

   if (GetDimension() != 1) {
      Error("SetBins","Operation only valid for 1-d histograms");
      return;
   }
   fXaxis.SetRange(0,0);
   fXaxis.Set(nx,xmin,xmax);
   fYaxis.Set(1,0,1);
   fZaxis.Set(1,0,1);
   fNcells = nx+2;
   SetBinsLength(fNcells);
   if (fSumw2.fN) {
      fSumw2.Set(fNcells);
   }
}

//______________________________________________________________________________
void TH1::SetBins(Int_t nx, const Axis_t *xBins)
{
//   -*-*-*-*-*-*-*Redefine  x axis parameters with variable bin sizes *-*-*-*-*-*-*-*-*-*
//                 ===================================================
// The X axis parameters are modified.
// The bins content array is resized
// if errors (Sumw2) the errors array is resized
// The previous bin contents are lost
// To change only the axis limits, see TAxis::SetRange
// xBins is supposed to be of length nx+1
   if (GetDimension() != 1) {
      Error("SetBins","Operation only valid for 1-d histograms");
      return;
   }
   fXaxis.SetRange(0,0);
   fXaxis.Set(nx,xBins);
   fYaxis.Set(1,0,1);
   fZaxis.Set(1,0,1);
   fNcells = nx+2;
   SetBinsLength(fNcells);
   if (fSumw2.fN) {
      fSumw2.Set(fNcells);
   }
}

//______________________________________________________________________________
void TH1::SetBins(Int_t nx, Axis_t xmin, Axis_t xmax, Int_t ny, Axis_t ymin, Axis_t ymax)
{
//   -*-*-*-*-*-*-*Redefine  x and y axis parameters*-*-*-*-*-*-*-*-*-*-*-*
//                 =================================
// The X and Y axis parameters are modified.
// The bins content array is resized
// if errors (Sumw2) the errors array is resized
// The previous bin contents are lost
// To change only the axis limits, see TAxis::SetRange

   if (GetDimension() != 2) {
      Error("SetBins","Operation only valid for 2-d histograms");
      return;
   }
   fXaxis.SetRange(0,0);
   fYaxis.SetRange(0,0);
   fXaxis.Set(nx,xmin,xmax);
   fYaxis.Set(ny,ymin,ymax);
   fZaxis.Set(1,0,1);
   fNcells = (nx+2)*(ny+2);
   SetBinsLength(fNcells);
   if (fSumw2.fN) {
      fSumw2.Set(fNcells);
   }
}

//______________________________________________________________________________
void TH1::SetBins(Int_t nx, const Axis_t *xBins, Int_t ny, const Axis_t *yBins)
{
//   -*-*-*-*-*-*-*Redefine  x and y axis parameters with variable bin sizes *-*-*-*-*-*-*-*-*
//                 =========================================================
// The X and Y axis parameters are modified.
// The bins content array is resized
// if errors (Sumw2) the errors array is resized
// The previous bin contents are lost
// To change only the axis limits, see TAxis::SetRange
// xBins is supposed to be of length nx+1, yBins is supposed to be of length ny+1

   if (GetDimension() != 2) {
      Error("SetBins","Operation only valid for 2-d histograms");
      return;
   }
   fXaxis.SetRange(0,0);
   fYaxis.SetRange(0,0);
   fXaxis.Set(nx,xBins);
   fYaxis.Set(ny,yBins);
   fZaxis.Set(1,0,1);
   fNcells = (nx+2)*(ny+2);
   SetBinsLength(fNcells);
   if (fSumw2.fN) {
      fSumw2.Set(fNcells);
   }
}


//______________________________________________________________________________
void TH1::SetBins(Int_t nx, Axis_t xmin, Axis_t xmax, Int_t ny, Axis_t ymin, Axis_t ymax, Int_t nz, Axis_t zmin, Axis_t zmax)
{
//   -*-*-*-*-*-*-*Redefine  x, y and z axis parameters*-*-*-*-*-*-*-*-*-*-*-*
//                 ====================================
// The X, Y and Z axis parameters are modified.
// The bins content array is resized
// if errors (Sumw2) the errors array is resized
// The previous bin contents are lost
// To change only the axis limits, see TAxis::SetRange

   if (GetDimension() != 3) {
      Error("SetBins","Operation only valid for 3-d histograms");
      return;
   }
   fXaxis.SetRange(0,0);
   fYaxis.SetRange(0,0);
   fZaxis.SetRange(0,0);
   fXaxis.Set(nx,xmin,xmax);
   fYaxis.Set(ny,ymin,ymax);
   fZaxis.Set(nz,zmin,zmax);
   fNcells = (nx+2)*(ny+2)*(nz+2);
   SetBinsLength(fNcells);
   if (fSumw2.fN) {
      fSumw2.Set(fNcells);
   }
}

//______________________________________________________________________________
void TH1::SetMaximum(Double_t maximum)
{
//   -*-*-*-*-*-*-*Set the maximum value for the Y axis*-*-*-*-*-*-*-*-*-*-*-*
//                 ====================================
// By default the maximum value is automatically set to the maximum
// bin content plus a margin of 10 per cent.
// Use TH1::GetMaximum to find the maximum value of an histogram
// Use TH1::GetMaximumBin to find the bin with the maximum value of an histogram
//
   fMaximum = maximum;
}


//______________________________________________________________________________
void TH1::SetMinimum(Double_t minimum)
{
//   -*-*-*-*-*-*-*Set the minimum value for the Y axis*-*-*-*-*-*-*-*-*-*-*-*
//                 ====================================
// By default the minimum value is automatically set to zero if all bin contents
// are positive or the minimum - 10 per cent otherwise.
// Use TH1::GetMinimum to find the minimum value of an histogram
// Use TH1::GetMinimumBin to find the bin with the minimum value of an histogram
//
   fMinimum = minimum;
}

//______________________________________________________________________________
void TH1::SetDirectory(TDirectory *dir)
{
   // By default when an histogram is created, it is added to the list
   // of histogram objects in the current directory in memory.
   // Remove reference to this histogram from current directory and add
   // reference to new directory dir. dir can be 0 in which case the
   // histogram does not belong to any directory.

   if (fDirectory == dir) return;
   if (fDirectory) fDirectory->GetList()->Remove(this);
   fDirectory = dir;
   if (fDirectory) fDirectory->GetList()->Add(this);
}


//______________________________________________________________________________
void TH1::SetError(const Stat_t *error)
{
//   -*-*-*-*-*-*-*Replace bin errors by values in array error*-*-*-*-*-*-*-*-*
//                 ===========================================
  Int_t bin;
  Stat_t binerror;
  for (bin=0; bin<fNcells; bin++) {
     binerror = error[bin];
     SetBinError(bin, binerror);
  }
}

//______________________________________________________________________________
void TH1::SetName(const char *name)
{
// Change the name of this histogram
//

//  Histograms are named objects in a THashList.
//  We must update the hashlist if we change the name
   if (fDirectory) fDirectory->GetList()->Remove(this);
   fName = name;
   if (fDirectory) fDirectory->GetList()->Add(this);
}

//______________________________________________________________________________
void TH1::SetNameTitle(const char *name, const char *title)
{
// Change the name and title of this histogram
//

//  Histograms are named objects in a THashList.
//  We must update the hashlist if we change the name
   if (fDirectory) fDirectory->GetList()->Remove(this);
   fName  = name;
   SetTitle(title);
   if (fDirectory) fDirectory->GetList()->Add(this);
}

//______________________________________________________________________________
void TH1::SetStats(Bool_t stats)
{
//   -*-*-*-*-*-*-*Set statistics option on/off
//                 ============================
//  By default, the statistics box is drawn.
//  The paint options can be selected via gStyle->SetOptStats.
//  This function sets/resets the kNoStats bin in the histogram object.
//  It has priority over the Style option.

   ResetBit(kNoStats);
   if (!stats) {
      SetBit(kNoStats);
      //remove the "stats" object from the list of functions
      if (fFunctions) delete fFunctions->FindObject("stats");
   }
}

//______________________________________________________________________________
void TH1::Sumw2()
{
//   -*-*-*Create structure to store sum of squares of weights*-*-*-*-*-*-*-*
//         ===================================================
//
//     if histogram is already filled, the sum of squares of weights
//     is filled with the existing bin contents
//
//     The error per bin will be computed as sqrt(sum of squares of weight)
//     for each bin.
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

  if (fSumw2.fN) {
     Warning("Sumw2","Sum of squares of weights structure already created");
     return;
  }

  fSumw2.Set(fNcells);

  for (Int_t bin=0; bin<fNcells; bin++) {
     fSumw2.fArray[bin] = GetBinContent(bin);
  }
}

//______________________________________________________________________________
TF1 *TH1::GetFunction(const char *name) const
{
//   -*-*-*Return pointer to function with name*-*-*-*-*-*-*-*-*-*-*-*-*
//         ===================================
//
// Functions such as TH1::Fit store the fitted function in the list of
// functions of this histogram.

   return (TF1*)fFunctions->FindObject(name);
}

//______________________________________________________________________________
Stat_t TH1::GetBinError(Int_t bin) const
{
//   -*-*-*-*-*Return value of error associated to bin number bin*-*-*-*-*
//             ==================================================
//
//    if the sum of squares of weights has been defined (via Sumw2),
//    this function returns the sqrt(sum of w2).
//    otherwise it returns the sqrt(contents) for this bin.
//
//   -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

  if (bin < 0) bin = 0;
  if (bin >= fNcells) bin = fNcells-1;
  if (fBuffer) ((TH1*)this)->BufferEmpty();
  if (fSumw2.fN) return TMath::Sqrt(fSumw2.fArray[bin]);
  Stat_t error2 = TMath::Abs(GetBinContent(bin));
  return TMath::Sqrt(error2);
}

//______________________________________________________________________________
Stat_t TH1::GetBinError(Int_t binx, Int_t biny) const
{
//   -*-*-*-*-*Return error of bin number binx, biny
//             =====================================
// NB: Function to be called for 2-d histograms only

   Int_t bin = GetBin(binx,biny);
   return GetBinError(bin);
}

//______________________________________________________________________________
Stat_t TH1::GetBinError(Int_t binx, Int_t biny, Int_t binz) const
{
//   -*-*-*-*-*Return error of bin number binx,biny,binz
//             =========================================
// NB: Function to be called for 3-d histograms only

   Int_t bin = GetBin(binx,biny,binz);
   return GetBinError(bin);
}

//______________________________________________________________________________
Stat_t TH1::GetCellContent(Int_t binx, Int_t biny) const
{
//   -*-*-*-*-*Return content of bin number binx, biny
//             =====================================
// NB: Function to be called for 2-d histograms only

   Int_t bin = GetBin(binx,biny);
   return GetBinContent(bin);
}

//______________________________________________________________________________
Stat_t TH1::GetCellError(Int_t binx, Int_t biny) const
{
//   -*-*-*-*-*Return error of bin number binx, biny
//             =====================================
// NB: Function to be called for 2-d histograms only

   Int_t bin = GetBin(binx,biny);
   return GetBinError(bin);
}

//______________________________________________________________________________
void TH1::SetBinError(Int_t bin, Stat_t error)
{
// see convention for numbering bins in TH1::GetBin
  if (!fSumw2.fN) Sumw2();
  if (bin <0 || bin>= fSumw2.fN) return;
  fSumw2.fArray[bin] = error*error;
}

//______________________________________________________________________________
void TH1::SetBinContent(Int_t binx, Int_t biny, Stat_t content)
{
// see convention for numbering bins in TH1::GetBin
  if (binx <0 || binx>fXaxis.GetNbins()+1) return;
  if (biny <0 || biny>fYaxis.GetNbins()+1) return;
  SetBinContent(biny*(fXaxis.GetNbins()+2) + binx,content);
}

//______________________________________________________________________________
void TH1::SetBinContent(Int_t binx, Int_t biny, Int_t binz, Stat_t content)
{
// see convention for numbering bins in TH1::GetBin
  if (binx <0 || binx>fXaxis.GetNbins()+1) return;
  if (biny <0 || biny>fYaxis.GetNbins()+1) return;
  if (binz <0 || binz>fZaxis.GetNbins()+1) return;
  Int_t bin = GetBin(binx,biny,binz);
  SetBinContent(bin,content);
}

//______________________________________________________________________________
void TH1::SetCellContent(Int_t binx, Int_t biny, Stat_t content)
{
  if (binx <0 || binx>fXaxis.GetNbins()+1) return;
  if (biny <0 || biny>fYaxis.GetNbins()+1) return;
  SetBinContent(biny*(fXaxis.GetNbins()+2) + binx,content);
}

//______________________________________________________________________________
void TH1::SetBinError(Int_t binx, Int_t biny, Stat_t error)
{
// see convention for numbering bins in TH1::GetBin
  if (binx <0 || binx>fXaxis.GetNbins()+1) return;
  if (biny <0 || biny>fYaxis.GetNbins()+1) return;
  SetBinError(biny*(fXaxis.GetNbins()+2) + binx,error);
}

//______________________________________________________________________________
void TH1::SetBinError(Int_t binx, Int_t biny, Int_t binz, Stat_t error)
{
// see convention for numbering bins in TH1::GetBin
  if (binx <0 || binx>fXaxis.GetNbins()+1) return;
  if (biny <0 || biny>fYaxis.GetNbins()+1) return;
  if (binz <0 || binz>fZaxis.GetNbins()+1) return;
  Int_t bin = GetBin(binx,biny,binz);
  SetBinError(bin,error);
}

//______________________________________________________________________________
void TH1::SetCellError(Int_t binx, Int_t biny, Stat_t error)
{
// see convention for numbering bins in TH1::GetBin
  if (binx <0 || binx>fXaxis.GetNbins()+1) return;
  if (biny <0 || biny>fYaxis.GetNbins()+1) return;
  if (!fSumw2.fN) Sumw2();
  Int_t bin = biny*(fXaxis.GetNbins()+2) + binx;
  fSumw2.fArray[bin] = error*error;
}

//______________________________________________________________________________
void TH1::SetBinContent(Int_t, Stat_t)
{
// see convention for numbering bins in TH1::GetBin
   AbstractMethod("SetBinContent");
}

ClassImp(TH1C)

//______________________________________________________________________________
//                     TH1C methods
//______________________________________________________________________________
TH1C::TH1C(): TH1(), TArrayC()
{
   fDimension = 1;
   SetBinsLength(3);
}

//______________________________________________________________________________
TH1C::TH1C(const char *name,const char *title,Int_t nbins,Axis_t xlow,Axis_t xup)
     : TH1(name,title,nbins,xlow,xup)
{
//
//    Create a 1-Dim histogram with fix bins of type char (one byte per channel)
//    ==========================================================================
//                    (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayC::Set(fNcells);

   if (xlow >= xup) SetBuffer(fgBufferSize);
}

//______________________________________________________________________________
TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
     : TH1(name,title,nbins,xbins)
{
//
//    Create a 1-Dim histogram with variable bins of type char (one byte per channel)
//    ==========================================================================
//                    (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayC::Set(fNcells);
}

//______________________________________________________________________________
TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
     : TH1(name,title,nbins,xbins)
{
//
//    Create a 1-Dim histogram with variable bins of type char (one byte per channel)
//    ==========================================================================
//                    (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayC::Set(fNcells);
}

//______________________________________________________________________________
TH1C::~TH1C()
{

}

//______________________________________________________________________________
TH1C::TH1C(const TH1C &h1c) : TH1(), TArrayC()
{
   ((TH1C&)h1c).Copy(*this);
}

//______________________________________________________________________________
void TH1C::AddBinContent(Int_t bin)
{
//   -*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//                   ==========================

   if (fArray[bin] < 127) fArray[bin]++;
}

//______________________________________________________________________________
void TH1C::AddBinContent(Int_t bin, Stat_t w)
{
//   -*-*-*-*-*-*-*-*Increment bin content by w*-*-*-*-*-*-*-*-*-*-*-*-*-*
//                   ==========================

   Int_t newval = fArray[bin] + Int_t(w);
   if (newval > -128 && newval < 128) {fArray[bin] = Char_t(newval); return;}
   if (newval < -127) fArray[bin] = -127;
   if (newval >  127) fArray[bin] =  127;
}

//______________________________________________________________________________
void TH1C::Copy(TObject &newth1) const
{
   TH1::Copy(newth1);
   TArrayC::Copy((TH1C&)newth1);
}

//______________________________________________________________________________
TH1 *TH1C::DrawCopy(Option_t *option) const
{

   TString opt = option;
   opt.ToLower();
   if (gPad && !opt.Contains("same")) gPad->Clear();
   TH1C *newth1 = (TH1C*)Clone();
   newth1->SetDirectory(0);
   newth1->SetBit(kCanDelete);
   newth1->AppendPad(opt.Data());
   return newth1;
}

//______________________________________________________________________________
Stat_t TH1C::GetBinContent(Int_t bin) const
{
// see convention for numbering bins in TH1::GetBin

   if (fBuffer) ((TH1C*)this)->BufferEmpty();
   if (bin < 0) bin = 0;
   if (bin >= fNcells) bin = fNcells-1;
   if (!fArray) return 0;
   return Stat_t (fArray[bin]);
}

//______________________________________________________________________________
void TH1C::Reset(Option_t *option)
{
   TH1::Reset(option);
   TArrayC::Reset();
}

//______________________________________________________________________________
void TH1C::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
// see convention for numbering bins in TH1::GetBin
// In case the bin number is greater than the number of bins and
// the timedisplay option is set or the kCanRebin bit is set,
// the number of bins is automatically doubled to accomodate the new bin
   if (bin < 0) return;
   if (bin >= fNcells-1) {
      if (!fXaxis.GetTimeDisplay() && !TestBit(kCanRebin)) {
         if (bin == fNcells-1) fArray[bin] = Char_t (content);
         return;
      }
      while (bin >= fNcells-1)  LabelsInflate();
   }
   fArray[bin] = Char_t (content);
   fEntries++;
}

//______________________________________________________________________________
void TH1C::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array

   if (n < 0) n = fXaxis.GetNbins() + 2;
   fNcells = n;
   TArrayC::Set(n);
}

//______________________________________________________________________________
TH1C& TH1C::operator=(const TH1C &h1)
{
   if (this != &h1)  ((TH1C&)h1).Copy(*this);
   return *this;
}


//______________________________________________________________________________
TH1C operator*(Double_t c1, const TH1C &h1)
{
   TH1C hnew = h1;
   hnew.Scale(c1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1C operator+(const TH1C &h1, const TH1C &h2)
{
   TH1C hnew = h1;
   hnew.Add(&h2,1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1C operator-(const TH1C &h1, const TH1C &h2)
{
   TH1C hnew = h1;
   hnew.Add(&h2,-1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1C operator*(const TH1C &h1, const TH1C &h2)
{
   TH1C hnew = h1;
   hnew.Multiply(&h2);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1C operator/(const TH1C &h1, const TH1C &h2)
{
   TH1C hnew = h1;
   hnew.Divide(&h2);
   hnew.SetDirectory(0);
   return hnew;
}

ClassImp(TH1S)

//______________________________________________________________________________
//                     TH1S methods
//______________________________________________________________________________
 TH1S::TH1S(): TH1(), TArrayS()
{
   fDimension = 1;
   SetBinsLength(3);
}

//______________________________________________________________________________
 TH1S::TH1S(const char *name,const char *title,Int_t nbins,Axis_t xlow,Axis_t xup)
     : TH1(name,title,nbins,xlow,xup)
{
//
//    Create a 1-Dim histogram with fix bins of type short
//    ====================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayS::Set(fNcells);

   if (xlow >= xup) SetBuffer(fgBufferSize);
}

//______________________________________________________________________________
 TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
     : TH1(name,title,nbins,xbins)
{
//
//    Create a 1-Dim histogram with variable bins of type short
//    =========================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayS::Set(fNcells);
}

//______________________________________________________________________________
 TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
     : TH1(name,title,nbins,xbins)
{
//
//    Create a 1-Dim histogram with variable bins of type short
//    =========================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayS::Set(fNcells);
}

//______________________________________________________________________________
 TH1S::~TH1S()
{

}

//______________________________________________________________________________
 TH1S::TH1S(const TH1S &h1s) : TH1(), TArrayS()
{
   ((TH1S&)h1s).Copy(*this);
}

//______________________________________________________________________________
 void TH1S::AddBinContent(Int_t bin)
{
//   -*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//                   ==========================

   if (fArray[bin] < 32767) fArray[bin]++;
}

//______________________________________________________________________________
 void TH1S::AddBinContent(Int_t bin, Stat_t w)
{
//                   Increment bin content by w
//                   ==========================

   Int_t newval = fArray[bin] + Int_t(w);
   if (newval > -32768 && newval < 32768) {fArray[bin] = Short_t(newval); return;}
   if (newval < -32767) fArray[bin] = -32767;
   if (newval >  32767) fArray[bin] =  32767;
}

//______________________________________________________________________________
 void TH1S::Copy(TObject &newth1) const
{
   TH1::Copy(newth1);
   TArrayS::Copy((TH1S&)newth1);
}

//______________________________________________________________________________
 TH1 *TH1S::DrawCopy(Option_t *option) const
{
   TString opt = option;
   opt.ToLower();
   if (gPad && !opt.Contains("same")) gPad->Clear();
   TH1S *newth1 = (TH1S*)Clone();
   newth1->SetDirectory(0);
   newth1->SetBit(kCanDelete);
   newth1->AppendPad(opt.Data());
   return newth1;
}

//______________________________________________________________________________
 Stat_t TH1S::GetBinContent(Int_t bin) const
{
// see convention for numbering bins in TH1::GetBin
   if (fBuffer) ((TH1S*)this)->BufferEmpty();
   if (bin < 0) bin = 0;
   if (bin >= fNcells) bin = fNcells-1;
   if (!fArray) return 0;
   return Stat_t (fArray[bin]);
}

//______________________________________________________________________________
 void TH1S::Reset(Option_t *option)
{
   TH1::Reset(option);
   TArrayS::Reset();
}

//______________________________________________________________________________
 void TH1S::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
// see convention for numbering bins in TH1::GetBin
// In case the bin number is greater than the number of bins and
// the timedisplay option is set or the kCanRebin bit is set,
// the number of bins is automatically doubled to accomodate the new bin
   if (bin < 0) return;
   if (bin >= fNcells-1) {
      if (!fXaxis.GetTimeDisplay() && !TestBit(kCanRebin)) {
         if (bin == fNcells-1) fArray[bin] = Short_t (content);
         return;
      }
      while (bin >= fNcells-1)  LabelsInflate();
   }
   fArray[bin] = Short_t (content);
   fEntries++;
}

//______________________________________________________________________________
 void TH1S::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array

   if (n < 0) n = fXaxis.GetNbins() + 2;
   fNcells = n;
   TArrayS::Set(n);
}

//______________________________________________________________________________
TH1S& TH1S::operator=(const TH1S &h1)
{
   if (this != &h1)  ((TH1S&)h1).Copy(*this);
   return *this;
}


//______________________________________________________________________________
TH1S operator*(Double_t c1, const TH1S &h1)
{
   TH1S hnew = h1;
   hnew.Scale(c1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1S operator+(const TH1S &h1, const TH1S &h2)
{
   TH1S hnew = h1;
   hnew.Add(&h2,1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1S operator-(const TH1S &h1, const TH1S &h2)
{
   TH1S hnew = h1;
   hnew.Add(&h2,-1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1S operator*(const TH1S &h1, const TH1S &h2)
{
   TH1S hnew = h1;
   hnew.Multiply(&h2);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1S operator/(const TH1S &h1, const TH1S &h2)
{
   TH1S hnew = h1;
   hnew.Divide(&h2);
   hnew.SetDirectory(0);
   return hnew;
}

ClassImp(TH1I)

//______________________________________________________________________________
//                     TH1I methods
//______________________________________________________________________________
TH1I::TH1I(): TH1(), TArrayI()
{
   fDimension = 1;
   SetBinsLength(3);
}

//______________________________________________________________________________
TH1I::TH1I(const char *name,const char *title,Int_t nbins,Axis_t xlow,Axis_t xup)
     : TH1(name,title,nbins,xlow,xup)
{
//
//    Create a 1-Dim histogram with fix bins of type integer
//    ====================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayI::Set(fNcells);

   if (xlow >= xup) SetBuffer(fgBufferSize);
}

//______________________________________________________________________________
TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
     : TH1(name,title,nbins,xbins)
{
//
//    Create a 1-Dim histogram with variable bins of type integer
//    =========================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayI::Set(fNcells);
}

//______________________________________________________________________________
TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
     : TH1(name,title,nbins,xbins)
{
//
//    Create a 1-Dim histogram with variable bins of type integer
//    =========================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayI::Set(fNcells);
}

//______________________________________________________________________________
TH1I::~TH1I()
{

}

//______________________________________________________________________________
TH1I::TH1I(const TH1I &h1i) : TH1(), TArrayI()
{
   ((TH1I&)h1i).Copy(*this);
}

//______________________________________________________________________________
void TH1I::AddBinContent(Int_t bin)
{
//   -*-*-*-*-*-*-*-*Increment bin content by 1*-*-*-*-*-*-*-*-*-*-*-*-*-*
//                   ==========================

   if (fArray[bin] < 2147483647) fArray[bin]++;
}

//______________________________________________________________________________
void TH1I::AddBinContent(Int_t bin, Stat_t w)
{
//                   Increment bin content by w
//                   ==========================

   Int_t newval = fArray[bin] + Int_t(w);
   if (newval > -2147483647 && newval < 2147483647) {fArray[bin] = Int_t(newval); return;}
   if (newval < -2147483647) fArray[bin] = -2147483647;
   if (newval >  2147483647) fArray[bin] =  2147483647;
}

//______________________________________________________________________________
void TH1I::Copy(TObject &newth1) const
{
   TH1::Copy(newth1);
   TArrayI::Copy((TH1I&)newth1);
}

//______________________________________________________________________________
TH1 *TH1I::DrawCopy(Option_t *option) const
{
   TString opt = option;
   opt.ToLower();
   if (gPad && !opt.Contains("same")) gPad->Clear();
   TH1I *newth1 = (TH1I*)Clone();
   newth1->SetDirectory(0);
   newth1->SetBit(kCanDelete);
   newth1->AppendPad(opt.Data());
   return newth1;
}

//______________________________________________________________________________
Stat_t TH1I::GetBinContent(Int_t bin) const
{
// see convention for numbering bins in TH1::GetBin
   if (fBuffer) ((TH1I*)this)->BufferEmpty();
   if (bin < 0) bin = 0;
   if (bin >= fNcells) bin = fNcells-1;
   if (!fArray) return 0;
   return Stat_t (fArray[bin]);
}

//______________________________________________________________________________
void TH1I::Reset(Option_t *option)
{
   TH1::Reset(option);
   TArrayI::Reset();
}

//______________________________________________________________________________
void TH1I::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
// see convention for numbering bins in TH1::GetBin
// In case the bin number is greater than the number of bins and
// the timedisplay option is set or the kCanRebin bit is set,
// the number of bins is automatically doubled to accomodate the new bin
   if (bin < 0) return;
   if (bin >= fNcells-1) {
      if (!fXaxis.GetTimeDisplay() && !TestBit(kCanRebin)) {
         if (bin == fNcells-1) fArray[bin] = Int_t (content);
         return;
      }
      while (bin >= fNcells-1)  LabelsInflate();
   }
   fArray[bin] = Int_t (content);
   fEntries++;
}

//______________________________________________________________________________
void TH1I::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array

   if (n < 0) n = fXaxis.GetNbins() + 2;
   fNcells = n;
   TArrayI::Set(n);
}

//______________________________________________________________________________
TH1I& TH1I::operator=(const TH1I &h1)
{
   if (this != &h1)  ((TH1I&)h1).Copy(*this);
   return *this;
}


//______________________________________________________________________________
TH1I operator*(Double_t c1, const TH1I &h1)
{
   TH1I hnew = h1;
   hnew.Scale(c1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1I operator+(const TH1I &h1, const TH1I &h2)
{
   TH1I hnew = h1;
   hnew.Add(&h2,1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1I operator-(const TH1I &h1, const TH1I &h2)
{
   TH1I hnew = h1;
   hnew.Add(&h2,-1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1I operator*(const TH1I &h1, const TH1I &h2)
{
   TH1I hnew = h1;
   hnew.Multiply(&h2);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1I operator/(const TH1I &h1, const TH1I &h2)
{
   TH1I hnew = h1;
   hnew.Divide(&h2);
   hnew.SetDirectory(0);
   return hnew;
}

ClassImp(TH1F)

//______________________________________________________________________________
//                     TH1F methods
//______________________________________________________________________________
TH1F::TH1F(): TH1(), TArrayF()
{
   fDimension = 1;
   SetBinsLength(3);
}

//______________________________________________________________________________
TH1F::TH1F(const char *name,const char *title,Int_t nbins,Axis_t xlow,Axis_t xup)
     : TH1(name,title,nbins,xlow,xup)
{
//
//    Create a 1-Dim histogram with fix bins of type float
//    ====================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayF::Set(fNcells);

   if (xlow >= xup) SetBuffer(fgBufferSize);
}

//______________________________________________________________________________
TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
     : TH1(name,title,nbins,xbins)
{
//
//    Create a 1-Dim histogram with variable bins of type float
//    =========================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayF::Set(fNcells);
}

//______________________________________________________________________________
TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
     : TH1(name,title,nbins,xbins)
{
//
//    Create a 1-Dim histogram with variable bins of type float
//    =========================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayF::Set(fNcells);
}

//______________________________________________________________________________
TH1F::TH1F(const TVectorF &v)
     : TH1("TVectorF","",v.GetNrows(),0,v.GetNrows())
{
// Create a histogram from a TVectorF
// by default the histogram name is "TVectorF" and title = ""

   TArrayF::Set(fNcells);
   fDimension = 1;
   for (Int_t i=0;i<v.GetNrows();i++) {
      SetBinContent(i+1,v(i));
   }
   TArrayF::Set(fNcells);
}

//______________________________________________________________________________
TH1F::TH1F(const TH1F &h) : TH1(), TArrayF()
{
   ((TH1F&)h).Copy(*this);
}

//______________________________________________________________________________
TH1F::~TH1F()
{

}

//______________________________________________________________________________
void TH1F::Copy(TObject &newth1) const
{
   TH1::Copy(newth1);
   TArrayF::Copy((TH1F&)newth1);
}

//______________________________________________________________________________
TH1 *TH1F::DrawCopy(Option_t *option) const
{
   TString opt = option;
   opt.ToLower();
   if (gPad && !opt.Contains("same")) gPad->Clear();
   TH1F *newth1 = (TH1F*)Clone();
   newth1->SetDirectory(0);
   newth1->SetBit(kCanDelete);
   newth1->AppendPad(opt.Data());
   return newth1;
}

//______________________________________________________________________________
Stat_t TH1F::GetBinContent(Int_t bin) const
{
// see convention for numbering bins in TH1::GetBin
   if (fBuffer) ((TH1F*)this)->BufferEmpty();
   if (bin < 0) bin = 0;
   if (bin >= fNcells) bin = fNcells-1;
   if (!fArray) return 0;
   return Stat_t (fArray[bin]);
}

//______________________________________________________________________________
void TH1F::Reset(Option_t *option)
{
   TH1::Reset(option);
   TArrayF::Reset();
}

//______________________________________________________________________________
void TH1F::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
// see convention for numbering bins in TH1::GetBin
// In case the bin number is greater than the number of bins and
// the timedisplay option is set or the kCanRebin bit is set,
// the number of bins is automatically doubled to accomodate the new bin
   if (bin < 0) return;
   if (bin >= fNcells-1) {
      if (!fXaxis.GetTimeDisplay() && !TestBit(kCanRebin)) {
         if (bin == fNcells-1) fArray[bin] = Float_t (content);
         return;
      }
      while (bin >= fNcells-1)  LabelsInflate();
   }
   fArray[bin] = Float_t (content);
   fEntries++;
}

//______________________________________________________________________________
void TH1F::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array

   if (n < 0) n = fXaxis.GetNbins() + 2;
   fNcells = n;
   TArrayF::Set(n);
}

//______________________________________________________________________________
TH1F& TH1F::operator=(const TH1F &h1)
{
   if (this != &h1)  ((TH1F&)h1).Copy(*this);
   return *this;
}


//______________________________________________________________________________
TH1F operator*(Double_t c1, const TH1F &h1)
{
   TH1F hnew = h1;
   hnew.Scale(c1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1F operator+(const TH1F &h1, const TH1F &h2)
{
   TH1F hnew = h1;
   hnew.Add(&h2,1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1F operator-(const TH1F &h1, const TH1F &h2)
{
   TH1F hnew = h1;
   hnew.Add(&h2,-1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1F operator*(const TH1F &h1, const TH1F &h2)
{
   TH1F hnew = h1;
   hnew.Multiply(&h2);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1F operator/(const TH1F &h1, const TH1F &h2)
{
   TH1F hnew = h1;
   hnew.Divide(&h2);
   hnew.SetDirectory(0);
   return hnew;
}


ClassImp(TH1D)

//______________________________________________________________________________
//                     TH1D methods
//______________________________________________________________________________
TH1D::TH1D(): TH1(), TArrayD()
{
   fDimension = 1;
   SetBinsLength(3);
}

//______________________________________________________________________________
TH1D::TH1D(const char *name,const char *title,Int_t nbins,Axis_t xlow,Axis_t xup)
     : TH1(name,title,nbins,xlow,xup)
{
//
//    Create a 1-Dim histogram with fix bins of type double
//    =====================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayD::Set(fNcells);

   if (xlow >= xup) SetBuffer(fgBufferSize);
}

//______________________________________________________________________________
TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
     : TH1(name,title,nbins,xbins)
{
//
//    Create a 1-Dim histogram with variable bins of type double
//    =====================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayD::Set(fNcells);
}

//______________________________________________________________________________
TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
     : TH1(name,title,nbins,xbins)
{
//
//    Create a 1-Dim histogram with variable bins of type double
//    =====================================================
//           (see TH1::TH1 for explanation of parameters)
//
   fDimension = 1;
   TArrayD::Set(fNcells);
}

//______________________________________________________________________________
TH1D::TH1D(const TVectorD &v)
     : TH1("TVectorD","",v.GetNrows(),0,v.GetNrows())
{
// Create a histogram from a TVectorD
// by default the histogram name is "TVectorD" and title = ""

   TArrayD::Set(fNcells);
   fDimension = 1;
   for (Int_t i=0;i<v.GetNrows();i++) {
      SetBinContent(i+1,v(i));
   }
   TArrayD::Set(fNcells);
}

//______________________________________________________________________________
TH1D::~TH1D()
{

}

//______________________________________________________________________________
TH1D::TH1D(const TH1D &h1d) : TH1(), TArrayD()
{
   ((TH1D&)h1d).Copy(*this);
}

//______________________________________________________________________________
void TH1D::Copy(TObject &newth1) const
{
   TH1::Copy(newth1);
   TArrayD::Copy((TH1D&)newth1);
}

//______________________________________________________________________________
TH1 *TH1D::DrawCopy(Option_t *option) const
{
   TString opt = option;
   opt.ToLower();
   if (gPad && !opt.Contains("same")) gPad->Clear();
   TH1D *newth1 = (TH1D*)Clone();
   newth1->SetDirectory(0);
   newth1->SetBit(kCanDelete);
   newth1->AppendPad(opt.Data());
   return newth1;
}

//______________________________________________________________________________
Stat_t TH1D::GetBinContent(Int_t bin) const
{
// see convention for numbering bins in TH1::GetBin
   if (fBuffer) ((TH1D*)this)->BufferEmpty();
   if (bin < 0) bin = 0;
   if (bin >= fNcells) bin = fNcells-1;
   if (!fArray) return 0;
   return Stat_t (fArray[bin]);
}

//______________________________________________________________________________
void TH1D::Reset(Option_t *option)
{
   TH1::Reset(option);
   TArrayD::Reset();
}

//______________________________________________________________________________
void TH1D::SetBinContent(Int_t bin, Stat_t content)
{
// Set bin content
// see convention for numbering bins in TH1::GetBin
// In case the bin number is greater than the number of bins and
// the timedisplay option is set or the kCanRebin bit is set,
// the number of bins is automatically doubled to accomodate the new bin
   if (bin < 0) return;
   if (bin >= fNcells-1) {
      if (!fXaxis.GetTimeDisplay() && !TestBit(kCanRebin)) {
         if (bin == fNcells-1) fArray[bin] = content;
         return;
      }
      while (bin >= fNcells-1)  LabelsInflate();
   }
   fArray[bin] = content;
   fEntries++;
}

//______________________________________________________________________________
void TH1D::SetBinsLength(Int_t n)
{
// Set total number of bins including under/overflow
// Reallocate bin contents array

   if (n < 0) n = fXaxis.GetNbins() + 2;
   fNcells = n;
   TArrayD::Set(n);
}

//______________________________________________________________________________
TH1D& TH1D::operator=(const TH1D &h1)
{
   if (this != &h1)  ((TH1D&)h1).Copy(*this);
   return *this;
}

//______________________________________________________________________________
TH1D operator*(Double_t c1, const TH1D &h1)
{
   TH1D hnew = h1;
   hnew.Scale(c1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1D operator+(const TH1D &h1, const TH1D &h2)
{
   TH1D hnew = h1;
   hnew.Add(&h2,1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1D operator-(const TH1D &h1, const TH1D &h2)
{
   TH1D hnew = h1;
   hnew.Add(&h2,-1);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1D operator*(const TH1D &h1, const TH1D &h2)
{
   TH1D hnew = h1;
   hnew.Multiply(&h2);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1D operator/(const TH1D &h1, const TH1D &h2)
{
   TH1D hnew = h1;
   hnew.Divide(&h2);
   hnew.SetDirectory(0);
   return hnew;
}

//______________________________________________________________________________
TH1 *R__H(Int_t hid)
{
   //return pointer to histogram with name
   //   hid if id >=0
   //   h_id if id <0

   char hname[20];
   if(hid >= 0) sprintf(hname,"h%d",hid);
   else         sprintf(hname,"h_%d",hid);
   return (TH1*)gDirectory->Get(hname);
}

//______________________________________________________________________________
TH1 *R__H(const char * hname)
{
   //return pointer to histogram with name hname

   return (TH1*)gDirectory->Get(hname);
}




ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.