// @(#)root/g3d:$Name: $:$Id: TSPHE.cxx,v 1.16 2005/08/30 09:11:39 brun Exp $ // Author: Rene Brun 13/06/97 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #include "TSPHE.h" #include "TNode.h" #include "TVirtualPad.h" #include "TBuffer3D.h" #include "TBuffer3DTypes.h" #include "TGeometry.h" ClassImp(TSPHE) //______________________________________________________________________________ //
// SPHE is a Sphere. It has 9 parameters: // // - name name of the shape // - title shape's title // - material (see TMaterial) // - rmin minimum radius // - rmax maximum radius // - themin theta min // - themax theta max // - phimin phi min // - phimax phi max // ROOT color indx = max(i-i0,j-j0); //______________________________________________________________________________ TSPHE::TSPHE() { // SPHE shape default constructor fRmin = 0; fRmax = 0; fThemin = 0; fThemax = 0; fPhimin = 0; fPhimax = 0; fSiTab = 0; fCoTab = 0; fCoThetaTab = 0; fNdiv = 0; fAspectRatio=1.0; faX = faY = faZ = 1.0; // Coeff along Ox } //______________________________________________________________________________ TSPHE::TSPHE(const char *name, const char *title, const char *material, Float_t rmin, Float_t rmax, Float_t themin, Float_t themax, Float_t phimin, Float_t phimax) : TShape(name, title,material) { // SPHE shape normal constructor fRmin = rmin; fRmax = rmax; fThemin = themin; fThemax = themax; fPhimin = phimin; fPhimax = phimax; fSiTab = 0; fCoTab = 0; fCoThetaTab = 0; fNdiv = 0; fAspectRatio=1.0; faX = faY = faZ = 1.0; // Coeff along Ox SetNumberOfDivisions (20); } //______________________________________________________________________________ TSPHE::TSPHE(const char *name, const char *title, const char *material, Float_t rmax) : TShape(name, title,material) { // SPHE shape "simplified" constructor fRmin = 0; fRmax = rmax; fThemin = 0; fThemax = 180; fPhimin = 0; fPhimax = 360; fSiTab = 0; fCoTab = 0; fCoThetaTab = 0; fNdiv = 0; fAspectRatio=1.0; faX = faY = faZ = 1.0; // Coeff along Ox SetNumberOfDivisions (20); } //______________________________________________________________________________ TSPHE::~TSPHE() { // SPHE shape default destructor if (fCoThetaTab) delete [] fCoThetaTab; if (fSiTab) delete [] fSiTab; if (fCoTab) delete [] fCoTab; fCoTab = 0; fSiTab = 0; fCoThetaTab=0; } //______________________________________________________________________________ Int_t TSPHE::DistancetoPrimitive(Int_t px, Int_t py) { // Compute distance from point px,py to a PSPHE // // Compute the closest distance of approach from point px,py to each // computed outline point of the PSPHE (stolen from PCON). Int_t n = GetNumberOfDivisions()+1; Int_t numPoints = 2*n*(fNz+1); return ShapeDistancetoPrimitive(numPoints,px,py); } //______________________________________________________________________________ void TSPHE::SetEllipse(const Float_t *factors){ if (factors[0] > 0) faX = factors[0]; if (factors[1] > 0) faY = factors[1]; if (factors[2] > 0) faZ = factors[2]; } //______________________________________________________________________________ void TSPHE::SetNumberOfDivisions (Int_t p) { if (GetNumberOfDivisions () == p) return; fNdiv=p; fNz = Int_t(fAspectRatio*fNdiv*(fThemax - fThemin )/(fPhimax - fPhimin )) + 1; MakeTableOfCoSin(); } //______________________________________________________________________________ void TSPHE::SetPoints(Double_t *points) const { // Create SPHE points Int_t i, j, n; Int_t indx = 0; n = GetNumberOfDivisions()+1; if (points) { if (!fCoTab) MakeTableOfCoSin(); Float_t z; for (i = 0; i < fNz+1; i++) { z = fRmin * fCoThetaTab[i]; // fSinPhiTab[i]; Float_t sithet = TMath::Sqrt(TMath::Abs(1-fCoThetaTab[i]*fCoThetaTab[i])); Float_t zi = fRmin*sithet; for (j = 0; j < n; j++) { points[indx++] = faX*zi * fCoTab[j]; points[indx++] = faY*zi * fSiTab[j]; points[indx++] = faZ*z; } z = fRmax * fCoThetaTab[i]; zi = fRmax*sithet; for (j = 0; j < n; j++) { points[indx++] = faX*zi * fCoTab[j]; points[indx++] = faY*zi * fSiTab[j]; points[indx++] = faZ*z; } } } } //______________________________________________________________________________ void TSPHE::Sizeof3D() const { // Return total X3D needed by TNode::ls (when called with option "x") Int_t n; n = GetNumberOfDivisions()+1; Int_t nz = fNz+1; Bool_t specialCase = kFALSE; if (TMath::Abs(TMath::Sin(2*(fPhimax - fPhimin))) <= 0.01) //mark this as a very special case, when specialCase = kTRUE; //we have to draw this PCON like a TUBE gSize3D.numPoints += 2*n*nz; gSize3D.numSegs += 4*(nz*n-1+(specialCase == kTRUE)); gSize3D.numPolys += 2*(nz*n-1+(specialCase == kTRUE)); } //______________________________________________________________________________ void TSPHE::MakeTableOfCoSin() const { const Double_t pi = TMath::ATan(1) * 4.0; const Double_t ragrad = pi/180.0; Float_t dphi = fPhimax - fPhimin; while (dphi > 360) dphi -= 360; Float_t dtet = fThemax - fThemin; while (dtet > 180) dtet -= 180; Int_t j; Int_t n = GetNumberOfDivisions () + 1; if (fCoTab) delete [] fCoTab; // Delete the old tab if any fCoTab = new Double_t [n]; if (!fCoTab ) return; if (fSiTab) delete [] fSiTab; // Delete the old tab if any fSiTab = new Double_t [n]; if (!fSiTab ) return; Double_t range = Double_t(dphi * ragrad); Double_t phi1 = Double_t(fPhimin * ragrad); Double_t angstep = range/(n-1); Double_t ph = phi1; for (j = 0; j < n; j++) { ph = phi1 + j*angstep; fCoTab[j] = TMath::Cos(ph); fSiTab[j] = TMath::Sin(ph); } n = fNz + 1; if (fCoThetaTab) delete [] fCoThetaTab; // Delete the old tab if any fCoThetaTab = new Double_t [n]; if (!fCoThetaTab ) return; range = Double_t(dtet * ragrad); phi1 = Double_t(fThemin * ragrad); angstep = range/(n-1); ph = phi1; for (j = 0; j < n; j++) { fCoThetaTab[n-j-1] = TMath::Cos(ph); ph += angstep; } } //_______________________________________________________________________ void TSPHE::Streamer(TBuffer &b) { // Stream a class object if (b.IsReading()) { UInt_t R__s, R__c; Version_t R__v = b.ReadVersion(&R__s, &R__c); if (R__v > 2) { TSPHE::Class()->ReadBuffer(b, this, R__v, R__s, R__c); Int_t ndiv = fNdiv; fNdiv = 0; SetNumberOfDivisions (ndiv); return; } //====process old versions before automatic schema evolution TShape::Streamer(b); b >> fRmin; // minimum radius b >> fRmax; // maximum radius b >> fThemin; // minimum theta b >> fThemax; // maximum theta b >> fPhimin; // minimum phi b >> fPhimax; // maximum phi Int_t tNdiv; // XXX added by RvdE XXX (fNdiv is set by SetNumberOfDivisions) b >> tNdiv; if (R__v > 1) { b >> faX; b >> faY; b >> faZ; } SetNumberOfDivisions (tNdiv); // XXX added by RvdE b.CheckByteCount(R__s, R__c, TSPHE::IsA()); //====end of old versions } else { TSPHE::Class()->WriteBuffer(b,this); } } //_______________________________________________________________________ const TBuffer3D & TSPHE::GetBuffer3D(Int_t reqSections) const { static TBuffer3DSphere buffer; TShape::FillBuffer3D(buffer, reqSections); if (reqSections & TBuffer3D::kShapeSpecific) { buffer.fRadiusInner = fRmin; buffer.fRadiusOuter = fRmax; buffer.fThetaMin = fThemin; buffer.fThetaMax = fThemax; buffer.fPhiMin = fPhimin; buffer.fPhiMax = fPhimax; buffer.SetSectionsValid(TBuffer3D::kShapeSpecific); } // We only provide the bounding box for uncut spheres if (reqSections & TBuffer3D::kBoundingBox && fThemin == 0 && fThemax == 180 && fPhimin == 0 && fPhimax == 360) { Double_t origin[3] = { 0.0, 0.0, 0.0 }; Double_t halfLengths[3] = { fRmax, fRmax, fRmax }; buffer.SetAABoundingBox(origin, halfLengths); if (!buffer.fLocalFrame) { TransformPoints(buffer.fBBVertex[0], 8); } buffer.SetSectionsValid(TBuffer3D::kBoundingBox); } // Needed by kRawSizes / kRaw const Int_t n = GetNumberOfDivisions()+1; const Int_t nz = fNz+1; Bool_t specialCase = (TMath::Abs(TMath::Sin(2*(fPhimax - fPhimin))) <= 0.01); if (reqSections & TBuffer3D::kRawSizes) { Int_t nbPnts = 2*n*nz; Int_t nbSegs = 4*(nz*n-1+(specialCase == kTRUE)); Int_t nbPols = 2*(nz*n-1+(specialCase == kTRUE)); if (buffer.SetRawSizes(nbPnts, 3*nbPnts, nbSegs, 3*nbSegs, nbPols, 6*nbPols)) { buffer.SetSectionsValid(TBuffer3D::kRawSizes); } } if ((reqSections & TBuffer3D::kRaw) && buffer.SectionsValid(TBuffer3D::kRawSizes)) { // Points SetPoints(buffer.fPnts); if (!buffer.fLocalFrame) { TransformPoints(buffer.fPnts, buffer.NbPnts()); } Int_t c = GetBasicColor(); // Segments Int_t indx = 0; Int_t indx2 = 0; Int_t i, j, k; //inside & outside spheres, number of segments: 2*nz*(n-1) // special case number of segments: 2*nz*n for (i = 0; i < nz*2; i++) { indx2 = i*n; for (j = 1; j < n; j++) { buffer.fSegs[indx++] = c; buffer.fSegs[indx++] = indx2+j-1; buffer.fSegs[indx++] = indx2+j; } if (specialCase) { buffer.fSegs[indx++] = c; buffer.fSegs[indx++] = indx2+j-1; buffer.fSegs[indx++] = indx2; } } //bottom & top lines, number of segments: 2*n for (i = 0; i < 2; i++) { indx2 = i*(nz-1)*2*n; for (j = 0; j < n; j++) { buffer.fSegs[indx++] = c; buffer.fSegs[indx++] = indx2+j; buffer.fSegs[indx++] = indx2+n+j; } } //inside & outside spheres, number of segments: 2*(nz-1)*n for (i = 0; i < (nz-1); i++) { //inside sphere indx2 = i*n*2; for (j = 0; j < n; j++) { buffer.fSegs[indx++] = c+2; buffer.fSegs[indx++] = indx2+j; buffer.fSegs[indx++] = indx2+n*2+j; } //outside sphere indx2 = i*n*2+n; for (j = 0; j < n; j++) { buffer.fSegs[indx++] = c+3; buffer.fSegs[indx++] = indx2+j; buffer.fSegs[indx++] = indx2+n*2+j; } } //left & right sections, number of segments: 2*(nz-2) // special case number of segments: 0 if (!specialCase) { for (i = 1; i < (nz-1); i++) { for (j = 0; j < 2; j++) { buffer.fSegs[indx++] = c; buffer.fSegs[indx++] = 2*i * n + j*(n-1); buffer.fSegs[indx++] = (2*i+1) * n + j*(n-1); } } } // Polygons Int_t m = n - 1 + (specialCase == kTRUE); indx = 0; //bottom & top, number of polygons: 2*(n-1) // special case number of polygons: 2*n for (j = 0; j < n-1; j++) { buffer.fPols[indx++] = c+3; buffer.fPols[indx++] = 4; buffer.fPols[indx++] = 2*nz*m+j; buffer.fPols[indx++] = m+j; buffer.fPols[indx++] = 2*nz*m+j+1; buffer.fPols[indx++] = j; } for (j = 0; j < n-1; j++) { buffer.fPols[indx++] = c+3; buffer.fPols[indx++] = 4; buffer.fPols[indx++] = 2*nz*m+n+j; buffer.fPols[indx++] = (nz*2-2)*m+j; buffer.fPols[indx++] = 2*nz*m+n+j+1; buffer.fPols[indx++] = (nz*2-2)*m+m+j; } if (specialCase) { buffer.fPols[indx++] = c+3; buffer.fPols[indx++] = 4; buffer.fPols[indx++] = 2*nz*m+j; buffer.fPols[indx++] = m+j; buffer.fPols[indx++] = 2*nz*m; buffer.fPols[indx++] = j; buffer.fPols[indx++] = c+3; buffer.fPols[indx++] = 4; buffer.fPols[indx++] = 2*nz*m+n+j; buffer.fPols[indx++] = (nz*2-2)*m+j; buffer.fPols[indx++] = 2*nz*m+n; buffer.fPols[indx++] = (nz*2-2)*m+m+j; } //inside & outside, number of polygons: (nz-1)*2*(n-1) for (k = 0; k < (nz-1); k++) { for (j = 0; j < n-1; j++) { buffer.fPols[indx++] = c; buffer.fPols[indx++] = 4; buffer.fPols[indx++] = 2*k*m+j; buffer.fPols[indx++] = nz*2*m+(2*k+2)*n+j+1; buffer.fPols[indx++] = (2*k+2)*m+j; buffer.fPols[indx++] = nz*2*m+(2*k+2)*n+j; } for (j = 0; j < n-1; j++) { buffer.fPols[indx++] = c+1; buffer.fPols[indx++] = 4; buffer.fPols[indx++] = (2*k+1)*m+j; buffer.fPols[indx++] = nz*2*m+(2*k + 3)*n+j; buffer.fPols[indx++] = (2*k+ 3)*m+j; buffer.fPols[indx++] = nz*2*m+(2*k+3)*n+j+1; } if (specialCase) { buffer.fPols[indx++] = c; buffer.fPols[indx++] = 4; buffer.fPols[indx++] = 2*k*m+j; buffer.fPols[indx++] = nz*2*m+(2*k+2)*n+j; buffer.fPols[indx++] = (2*k+2)*m+j; buffer.fPols[indx++] = nz*2*m+(2*k+2)*n; buffer.fPols[indx++] = c+1; buffer.fPols[indx++] = 4; buffer.fPols[indx++] = (2*k+1)*m+j; buffer.fPols[indx++] = nz*2*m+(2*k+3)*n+j; buffer.fPols[indx++] = (2*k+3)*m+j; buffer.fPols[indx++] = nz*2*m+(2*k+3)*n; } } //left & right sections, number of polygons: 2*(nz-1) // special case number of polygons: 0 if (!specialCase) { indx2 = nz*2*(n-1); for (k = 0; k < (nz-1); k++) { buffer.fPols[indx++] = c+2; buffer.fPols[indx++] = 4; buffer.fPols[indx++] = k==0 ? indx2 : indx2+2*nz*n+2*(k-1); buffer.fPols[indx++] = indx2+2*(k+1)*n; buffer.fPols[indx++] = indx2+2*nz*n+2*k; buffer.fPols[indx++] = indx2+(2*k+3)*n; buffer.fPols[indx++] = c+2; buffer.fPols[indx++] = 4; buffer.fPols[indx++] = k==0 ? indx2+n-1 : indx2+2*nz*n+2*(k-1)+1; buffer.fPols[indx++] = indx2+(2*k+3)*n+n-1; buffer.fPols[indx++] = indx2+2*nz*n+2*k+1; buffer.fPols[indx++] = indx2+2*(k+1)*n+n-1; } buffer.fPols[indx-8] = indx2+n; buffer.fPols[indx-2] = indx2+2*n-1; } buffer.SetSectionsValid(TBuffer3D::kRaw); } return buffer; }