// @(#)root/geom:$Name: $:$Id: TGeoBBox.cxx,v 1.46 2005/09/04 15:12:08 brun Exp $// Author: Andrei Gheata 24/10/01
// Contains() and DistFromOutside/Out() implemented by Mihaela Gheata
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//--------------------------------------------------------------------------
// TGeoBBox - box class. All shape primitives inherit from this, their
// constructor filling automatically the parameters of the box that bounds
// the given shape. Defined by 6 parameters :
// fDX, fDY, fDZ - half lengths on X, Y and Z axis
// fOrigin[3] - position of box origin
//
//--------------------------------------------------------------------------
//
//
//--- Building boxes
// ==================
// Normally a box has to be build only with 3 parameters : dx, dy, dz
// representing the half lengths on X, Y and Z axis. In this case, the origin
// of the box will match the one of its reference frame. The translation of the
// origin is used only by the constructors of all other shapes in order to
// define their own bounding boxes. Users should be aware that building a
// translated box that will represent a physical shape by itself will affect any
// further positioning of other shapes inside. Therefore in order to build a
// positioned box one should follow the recipe described in class TGeoNode.
//
// Creation of boxes
// 1. TGeoBBox *box = new TGeoBBox("BOX", 20, 30, 40);
//
/*
*/
//
//
// 2. A volume having a box shape can be built in one step:
// TGeoVolume *vbox = gGeoManager->MakeBox("vbox", ptrMed, 20,30,40);
//
// Divisions of boxes.
//
// Volumes having box shape can be divided with equal-length slices on
// X, Y or Z axis. The following options are supported:
// a) Dividing the full range of one axis in N slices
// TGeoVolume *divx = vbox->Divide("SLICEX", 1, N);
// - here 1 stands for the division axis (1-X, 2-Y, 3-Z)
//
/*
*/
//
//
// b) Dividing in a limited range - general case.
// TGeoVolume *divy = vbox->Divide("SLICEY",2,N,start,step);
// - start = starting offset within (-fDY, fDY)
// - step = slicing step
//
//
/*
*/
//
//
// Both cases are supported by all shapes.
// See also class TGeoShape for utility methods provided by any particular
// shape.
//_____________________________________________________________________________
#include "Riostream.h"
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TVirtualGeoPainter.h"
#include "TGeoBBox.h"
#include "TVirtualPad.h"
#include "TBuffer3D.h"
#include "TBuffer3DTypes.h"
ClassImp(TGeoBBox)
//_____________________________________________________________________________
TGeoBBox::TGeoBBox()
{
// Default constructor
SetShapeBit(TGeoShape::kGeoBox);
fDX = fDY = fDZ = 0;
for (Int_t i=0; i<3; i++)
fOrigin[i] = 0;
}
//_____________________________________________________________________________
TGeoBBox::TGeoBBox(Double_t dx, Double_t dy, Double_t dz, Double_t *origin)
:TGeoShape("")
{
// Constructor
SetShapeBit(TGeoShape::kGeoBox);
SetBoxDimensions(dx, dy, dz, origin);
}
//_____________________________________________________________________________
TGeoBBox::TGeoBBox(const char *name, Double_t dx, Double_t dy, Double_t dz, Double_t *origin)
:TGeoShape(name)
{
// Constructor
SetShapeBit(TGeoShape::kGeoBox);
SetBoxDimensions(dx, dy, dz, origin);
}
//_____________________________________________________________________________
TGeoBBox::TGeoBBox(Double_t *param)
:TGeoShape("")
{
// constructor based on the array of parameters
// param[0] - half-length in x
// param[1] - half-length in y
// param[2] - half-length in z
SetShapeBit(TGeoShape::kGeoBox);
SetDimensions(param);
}
//_____________________________________________________________________________
TGeoBBox::~TGeoBBox()
{
// Destructor
}
//_____________________________________________________________________________
void TGeoBBox::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
// Compute normal to closest surface from POINT.
memset(norm,0,3*sizeof(Double_t));
Double_t saf[3];
Int_t i;
saf[0]=TMath::Abs(TMath::Abs(point[0]-fOrigin[0])-fDX);
saf[1]=TMath::Abs(TMath::Abs(point[1]-fOrigin[1])-fDY);
saf[2]=TMath::Abs(TMath::Abs(point[2]-fOrigin[2])-fDZ);
i = TMath::LocMin(3,saf);
norm[i] = (dir[i]>0)?1:(-1);
}
//_____________________________________________________________________________
Bool_t TGeoBBox::CouldBeCrossed(Double_t *point, Double_t *dir) const
{
// decide fast if the bounding box could be crossed by a vector
Double_t mind = fDX;
if (fDY<mind) mind=fDY;
if (fDZ<mind) mind=fDZ;
Double_t dx = fOrigin[0]-point[0];
Double_t dy = fOrigin[1]-point[1];
Double_t dz = fOrigin[2]-point[2];
Double_t do2 = dx*dx+dy*dy+dz*dz;
if (do2<=(mind*mind)) return kTRUE;
Double_t rmax2 = fDX*fDX+fDY*fDY+fDZ*fDZ;
if (do2<=rmax2) return kTRUE;
// inside bounding sphere
Double_t doct = dx*dir[0]+dy*dir[1]+dz*dir[2];
// leaving ray
if (doct<=0) return kFALSE;
Double_t dirnorm=dir[0]*dir[0]+dir[1]*dir[1]+dir[2]*dir[2];
if ((doct*doct)>=(do2-rmax2)*dirnorm) return kTRUE;
return kFALSE;
}
//_____________________________________________________________________________
Int_t TGeoBBox::DistancetoPrimitive(Int_t px, Int_t py)
{
// compute closest distance from point px,py to each corner
const Int_t numPoints = 8;
return ShapeDistancetoPrimitive(numPoints, px, py);
}
//_____________________________________________________________________________
TGeoVolume *TGeoBBox::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
Double_t start, Double_t step)
{
//--- Divide this box shape belonging to volume "voldiv" into ndiv equal volumes
// called divname, from start position with the given step. Returns pointer
// to created division cell volume. In case a wrong division axis is supplied,
// returns pointer to volume to be divided.
TGeoShape *shape; //--- shape to be created
TGeoVolume *vol; //--- division volume to be created
TGeoVolumeMulti *vmulti; //--- generic divided volume
TGeoPatternFinder *finder; //--- finder to be attached
TString opt = ""; //--- option to be attached
Double_t end = start+ndiv*step;
switch (iaxis) {
case 1: //--- divide on X
shape = new TGeoBBox(step/2., fDY, fDZ);
finder = new TGeoPatternX(voldiv, ndiv, start, end);
opt = "X";
break;
case 2: //--- divide on Y
shape = new TGeoBBox(fDX, step/2., fDZ);
finder = new TGeoPatternY(voldiv, ndiv, start, end);
opt = "Y";
break;
case 3: //--- divide on Z
shape = new TGeoBBox(fDX, fDY, step/2.);
finder = new TGeoPatternZ(voldiv, ndiv, start, end);
opt = "Z";
break;
default:
Error("Divide", "Wrong axis type for division");
return 0;
}
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
vmulti->AddVolume(vol);
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
for (Int_t ic=0; ic<ndiv; ic++) {
voldiv->AddNodeOffset(vol, ic, start+step/2.+ic*step, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
}
//_____________________________________________________________________________
void TGeoBBox::ComputeBBox()
{
// compute bounding box - already computed in this case
}
//_____________________________________________________________________________
Bool_t TGeoBBox::Contains(Double_t *point) const
{
// test if point is inside this shape
if (TMath::Abs(point[2]-fOrigin[2]) > fDZ) return kFALSE;
if (TMath::Abs(point[0]-fOrigin[0]) > fDX) return kFALSE;
if (TMath::Abs(point[1]-fOrigin[1]) > fDY) return kFALSE;
return kTRUE;
}
//_____________________________________________________________________________
Double_t TGeoBBox::DistFromInside(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// Compute distance from inside point to surface of the box.
// Boundary safe algorithm.
Double_t s,smin,saf[6];
Double_t newpt[3];
Int_t i;
for (i=0; i<3; i++) newpt[i] = point[i] - fOrigin[i];
saf[0] = fDX+newpt[0];
saf[1] = fDX-newpt[0];
saf[2] = fDY+newpt[1];
saf[3] = fDY-newpt[1];
saf[4] = fDZ+newpt[2];
saf[5] = fDZ-newpt[2];
if (iact<3 && safe) {
smin = saf[0];
// compute safe distance
for (i=1;i<6;i++) if (saf[i] < smin) smin = saf[i];
*safe = smin;
if (smin<0) *safe = 0.0;
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
// compute distance to surface
smin=TGeoShape::Big();
for (i=0; i<3; i++) {
if (dir[i]!=0) {
s = (dir[i]>0)?(saf[(i<<1)+1]/dir[i]):(-saf[i<<1]/dir[i]);
if (s < 0) return 0.0;
if (s < smin) smin = s;
}
}
return smin;
}
//_____________________________________________________________________________
Double_t TGeoBBox::DistFromOutside(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// Compute distance from outside point to surface of the box.
// Boundary safe algorithm.
Bool_t in = kTRUE;
Double_t saf[3];
Double_t par[3];
Double_t newpt[3];
Int_t i,j;
for (i=0; i<3; i++) newpt[i] = point[i] - fOrigin[i];
par[0] = fDX;
par[1] = fDY;
par[2] = fDZ;
for (i=0; i<3; i++) {
saf[i] = TMath::Abs(newpt[i])-par[i];
if (in && saf[i]>0) in=kFALSE;
}
if (iact<3 && safe) {
// compute safe distance
if (in) {
*safe = 0.0;
} else {
*safe = saf[0];
if (saf[1] > *safe) *safe = saf[1];
if (saf[2] > *safe) *safe = saf[2];
}
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
// compute distance from point to box
Double_t coord, snxt=TGeoShape::Big();
Int_t ibreak=0;
// protection in case point is actually inside box
if (in) {
j = 0;
Double_t ss = saf[0];
if (saf[1]>ss) {
ss = saf[1];
j = 1;
}
if (saf[2]>ss) j = 2;
if (newpt[j]*dir[j]>0) return TGeoShape::Big(); // in fact exiting
return 0.0;
}
for (i=0; i<3; i++) {
if (saf[i]<0) continue;
if (newpt[i]*dir[i] >= 0) continue;
snxt = saf[i]/TMath::Abs(dir[i]);
ibreak = 0;
for (j=0; j<3; j++) {
if (j==i) continue;
coord=newpt[j]+snxt*dir[j];
if (TMath::Abs(coord)>par[j]) {
ibreak=1;
break;
}
}
if (!ibreak) return snxt;
}
return TGeoShape::Big();
}
//_____________________________________________________________________________
const char *TGeoBBox::GetAxisName(Int_t iaxis) const
{
// Returns name of axis IAXIS.
switch (iaxis) {
case 1:
return "X";
case 2:
return "Y";
case 3:
return "Z";
default:
return "UNDEFINED";
}
}
//_____________________________________________________________________________
Double_t TGeoBBox::GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
{
// Get range of shape for a given axis.
xlo = 0;
xhi = 0;
Double_t dx = 0;
switch (iaxis) {
case 1:
xlo = fOrigin[0]-fDX;
xhi = fOrigin[0]+fDX;
dx = 2*fDX;
return dx;
case 2:
xlo = fOrigin[1]-fDY;
xhi = fOrigin[1]+fDY;
dx = 2*fDY;
return dx;
case 3:
xlo = fOrigin[2]-fDZ;
xhi = fOrigin[2]+fDZ;
dx = 2*fDZ;
return dx;
}
return dx;
}
//_____________________________________________________________________________
void TGeoBBox::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2
param[0] = 0.; // Rmin
param[1] = fDX*fDX+fDY*fDY; // Rmax
param[2] = 0.; // Phi1
param[3] = 360.; // Phi2
}
//_____________________________________________________________________________
Int_t TGeoBBox::GetFittingBox(const TGeoBBox *parambox, TGeoMatrix *mat, Double_t &dx, Double_t &dy, Double_t &dz) const
{
// Fills real parameters of a positioned box inside this one. Returns 0 if successfull.
dx=dy=dz=0;
if (mat->IsRotation()) {
Error("GetFittingBox", "cannot handle parametrized rotated volumes");
return 1; // ### rotation not accepted ###
}
//--> translate the origin of the parametrized box to the frame of this box.
Double_t origin[3];
mat->LocalToMaster(parambox->GetOrigin(), origin);
if (!Contains(origin)) {
Error("GetFittingBox", "wrong matrix - parametrized box is outside this");
return 1; // ### wrong matrix ###
}
//--> now we have to get the valid range for all parametrized axis
Double_t xlo=0, xhi=0;
Double_t dd[3];
dd[0] = parambox->GetDX();
dd[1] = parambox->GetDY();
dd[2] = parambox->GetDZ();
for (Int_t iaxis=0; iaxis<3; iaxis++) {
if (dd[iaxis]>=0) continue;
TGeoBBox::GetAxisRange(iaxis+1, xlo, xhi);
//-> compute best fitting parameter
dd[iaxis] = TMath::Min(origin[iaxis]-xlo, xhi-origin[iaxis]);
if (dd[iaxis]<0) {
Error("GetFittingBox", "wrong matrix");
return 1;
}
}
dx = dd[0];
dy = dd[1];
dz = dd[2];
return 0;
}
//_____________________________________________________________________________
TGeoShape *TGeoBBox::GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
if (!TestShapeBit(kGeoRunTimeShape)) return 0;
Double_t dx, dy, dz;
Int_t ierr = mother->GetFittingBox(this, mat, dx, dy, dz);
if (ierr) {
Error("GetMakeRuntimeShape", "cannot fit this to mother");
return 0;
}
return (new TGeoBBox(dx, dy, dz));
}
//_____________________________________________________________________________
void TGeoBBox::InspectShape() const
{
// print shape parameters
printf("*** Shape %s: TGeoBBox ***\n", GetName());
printf(" dX = %11.5f\n", fDX);
printf(" dY = %11.5f\n", fDY);
printf(" dZ = %11.5f\n", fDZ);
printf(" origin: x=%11.5f y=%11.5f z=%11.5f\n", fOrigin[0], fOrigin[1], fOrigin[2]);
}
//_____________________________________________________________________________
TBuffer3D *TGeoBBox::MakeBuffer3D() const
{
// Creates a TBuffer3D describing *this* shape.
// Coordinates are in local reference frame.
TBuffer3D* buff = new TBuffer3D(TBuffer3DTypes::kGeneric,
8, 3*8, // Points
12, 3*12, // Segments
6, 6*6); // Polygons
if (buff)
{
SetPoints(buff->fPnts);
SetSegsAndPols(*buff);
}
return buff;
}
//_____________________________________________________________________________
void TGeoBBox::SetSegsAndPols(TBuffer3D &buff) const
{
// Fill TBuffer3D structure for segments and polygons.
Int_t c = GetBasicColor();
buff.fSegs[ 0] = c ; buff.fSegs[ 1] = 0 ; buff.fSegs[ 2] = 1 ;
buff.fSegs[ 3] = c+1 ; buff.fSegs[ 4] = 1 ; buff.fSegs[ 5] = 2 ;
buff.fSegs[ 6] = c+1 ; buff.fSegs[ 7] = 2 ; buff.fSegs[ 8] = 3 ;
buff.fSegs[ 9] = c ; buff.fSegs[10] = 3 ; buff.fSegs[11] = 0 ;
buff.fSegs[12] = c+2 ; buff.fSegs[13] = 4 ; buff.fSegs[14] = 5 ;
buff.fSegs[15] = c+2 ; buff.fSegs[16] = 5 ; buff.fSegs[17] = 6 ;
buff.fSegs[18] = c+3 ; buff.fSegs[19] = 6 ; buff.fSegs[20] = 7 ;
buff.fSegs[21] = c+3 ; buff.fSegs[22] = 7 ; buff.fSegs[23] = 4 ;
buff.fSegs[24] = c ; buff.fSegs[25] = 0 ; buff.fSegs[26] = 4 ;
buff.fSegs[27] = c+2 ; buff.fSegs[28] = 1 ; buff.fSegs[29] = 5 ;
buff.fSegs[30] = c+1 ; buff.fSegs[31] = 2 ; buff.fSegs[32] = 6 ;
buff.fSegs[33] = c+3 ; buff.fSegs[34] = 3 ; buff.fSegs[35] = 7 ;
buff.fPols[ 0] = c ; buff.fPols[ 1] = 4 ; buff.fPols[ 2] = 0 ;
buff.fPols[ 3] = 9 ; buff.fPols[ 4] = 4 ; buff.fPols[ 5] = 8 ;
buff.fPols[ 6] = c+1 ; buff.fPols[ 7] = 4 ; buff.fPols[ 8] = 1 ;
buff.fPols[ 9] = 10 ; buff.fPols[10] = 5 ; buff.fPols[11] = 9 ;
buff.fPols[12] = c ; buff.fPols[13] = 4 ; buff.fPols[14] = 2 ;
buff.fPols[15] = 11 ; buff.fPols[16] = 6 ; buff.fPols[17] = 10 ;
buff.fPols[18] = c+1 ; buff.fPols[19] = 4 ; buff.fPols[20] = 3 ;
buff.fPols[21] = 8 ; buff.fPols[22] = 7 ; buff.fPols[23] = 11 ;
buff.fPols[24] = c+2 ; buff.fPols[25] = 4 ; buff.fPols[26] = 0 ;
buff.fPols[27] = 3 ; buff.fPols[28] = 2 ; buff.fPols[29] = 1 ;
buff.fPols[30] = c+3 ; buff.fPols[31] = 4 ; buff.fPols[32] = 4 ;
buff.fPols[33] = 5 ; buff.fPols[34] = 6 ; buff.fPols[35] = 7 ;
}
//_____________________________________________________________________________
Double_t TGeoBBox::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t safe, safy, safz;
if (in) {
safe = fDX - TMath::Abs(point[0]-fOrigin[0]);
safy = fDY - TMath::Abs(point[1]-fOrigin[1]);
safz = fDZ - TMath::Abs(point[2]-fOrigin[2]);
if (safy < safe) safe = safy;
if (safz < safe) safe = safz;
} else {
safe = -fDX + TMath::Abs(point[0]-fOrigin[0]);
safy = -fDY + TMath::Abs(point[1]-fOrigin[1]);
safz = -fDZ + TMath::Abs(point[2]-fOrigin[2]);
if (safy > safe) safe = safy;
if (safz > safe) safe = safz;
}
return safe;
}
//_____________________________________________________________________________
void TGeoBBox::SavePrimitive(ofstream &out, Option_t * /*option*/)
{
// Save a primitive as a C++ statement(s) on output stream "out".
if (TObject::TestBit(kGeoSavePrimitive)) return;
out << " // Shape: " << GetName() << " type: " << ClassName() << endl;
out << " dx = " << fDX << ";" << endl;
out << " dy = " << fDY << ";" << endl;
out << " dz = " << fDZ << ";" << endl;
if (fOrigin[0]!=0 || fOrigin[1]!=0 || fOrigin[2]!=0) {
out << " origin[0] = " << fOrigin[0] << ";" << endl;
out << " origin[1] = " << fOrigin[1] << ";" << endl;
out << " origin[2] = " << fOrigin[2] << ";" << endl;
out << " TGeoShape *" << GetPointerName() << " = new TGeoBBox(\"" << GetName() << "\", dx,dy,dz,origin);" << endl;
} else {
out << " TGeoShape *" << GetPointerName() << " = new TGeoBBox(\"" << GetName() << "\", dx,dy,dz);" << endl;
}
TObject::SetBit(TGeoShape::kGeoSavePrimitive);
}
//_____________________________________________________________________________
void TGeoBBox::SetBoxDimensions(Double_t dx, Double_t dy, Double_t dz, Double_t *origin)
{
// set parameters of box
fDX = dx;
fDY = dy;
fDZ = dz;
for (Int_t i=0; i<3; i++) {
if (!origin) {
fOrigin[i] = 0.0;
} else {
fOrigin[i] = origin[i];
}
}
if ((fDX==0) && (fDY==0) && (fDZ==0)) return;
if ((fDX<0) || (fDY<0) || (fDZ<0)) {
SetShapeBit(kGeoRunTimeShape);
// printf("box : %f %f %f\n", fDX, fDY, fDZ);
}
}
//_____________________________________________________________________________
void TGeoBBox::SetDimensions(Double_t *param)
{
// constructor based on the array of parameters
// param[0] - half-length in x
// param[1] - half-length in y
// param[2] - half-length in z
if (!param) {
Error("ctor", "null parameters");
return;
}
fDX = param[0];
fDY = param[1];
fDZ = param[2];
if ((fDX==0) && (fDY==0) && (fDZ==0)) return;
if ((fDX<0) || (fDY<0) || (fDZ<0)) {
SetShapeBit(kGeoRunTimeShape);
// printf("box : %f %f %f\n", fDX, fDY, fDZ);
}
}
//_____________________________________________________________________________
void TGeoBBox::SetBoxPoints(Double_t *points) const
{
TGeoBBox::SetPoints(points);
}
//_____________________________________________________________________________
void TGeoBBox::SetPoints(Double_t *points) const
{
// create box points
if (!points) return;
Double_t xmin,xmax,ymin,ymax,zmin,zmax;
xmin = -fDX+fOrigin[0];
xmax = fDX+fOrigin[0];
ymin = -fDY+fOrigin[1];
ymax = fDY+fOrigin[1];
zmin = -fDZ+fOrigin[2];
zmax = fDZ+fOrigin[2];
points[ 0] = xmin; points[ 1] = ymin; points[ 2] = zmin;
points[ 3] = xmin; points[ 4] = ymax; points[ 5] = zmin;
points[ 6] = xmax; points[ 7] = ymax; points[ 8] = zmin;
points[ 9] = xmax; points[10] = ymin; points[11] = zmin;
points[12] = xmin; points[13] = ymin; points[14] = zmax;
points[15] = xmin; points[16] = ymax; points[17] = zmax;
points[18] = xmax; points[19] = ymax; points[20] = zmax;
points[21] = xmax; points[22] = ymin; points[23] = zmax;
}
//_____________________________________________________________________________
void TGeoBBox::SetPoints(Float_t *points) const
{
// create box points
if (!points) return;
Double_t xmin,xmax,ymin,ymax,zmin,zmax;
xmin = -fDX+fOrigin[0];
xmax = fDX+fOrigin[0];
ymin = -fDY+fOrigin[1];
ymax = fDY+fOrigin[1];
zmin = -fDZ+fOrigin[2];
zmax = fDZ+fOrigin[2];
points[ 0] = xmin; points[ 1] = ymin; points[ 2] = zmin;
points[ 3] = xmin; points[ 4] = ymax; points[ 5] = zmin;
points[ 6] = xmax; points[ 7] = ymax; points[ 8] = zmin;
points[ 9] = xmax; points[10] = ymin; points[11] = zmin;
points[12] = xmin; points[13] = ymin; points[14] = zmax;
points[15] = xmin; points[16] = ymax; points[17] = zmax;
points[18] = xmax; points[19] = ymax; points[20] = zmax;
points[21] = xmax; points[22] = ymin; points[23] = zmax;
}
//_____________________________________________________________________________
void TGeoBBox::Sizeof3D() const
{
///// fill size of this 3-D object
/// TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
/// if (painter) painter->AddSize3D(8, 12, 6);
}
//_____________________________________________________________________________
const TBuffer3D & TGeoBBox::GetBuffer3D(Int_t reqSections, Bool_t localFrame) const
{
static TBuffer3D buffer(TBuffer3DTypes::kGeneric);
FillBuffer3D(buffer, reqSections, localFrame);
// TODO: A box itself has has nothing more as already described
// by bounding box. How will viewer interpret?
if (reqSections & TBuffer3D::kRawSizes) {
if (buffer.SetRawSizes(8, 3*8, 12, 3*12, 6, 6*6)) {
buffer.SetSectionsValid(TBuffer3D::kRawSizes);
}
}
if ((reqSections & TBuffer3D::kRaw) && buffer.SectionsValid(TBuffer3D::kRawSizes)) {
SetPoints(buffer.fPnts);
if (!buffer.fLocalFrame) {
TransformPoints(buffer.fPnts, buffer.NbPnts());
}
SetSegsAndPols(buffer);
buffer.SetSectionsValid(TBuffer3D::kRaw);
}
return buffer;
}
//_____________________________________________________________________________
void TGeoBBox::FillBuffer3D(TBuffer3D & buffer, Int_t reqSections, Bool_t localFrame) const
{
// Fill the supplied buffer, with sections in desired frame
// See TBuffer3D.h for explanation of sections, frame etc.
TGeoShape::FillBuffer3D(buffer, reqSections, localFrame);
if (reqSections & TBuffer3D::kBoundingBox) {
Double_t halfLengths[3] = { fDX, fDY, fDZ };
buffer.SetAABoundingBox(fOrigin, halfLengths);
if (!buffer.fLocalFrame) {
TransformPoints(buffer.fBBVertex[0], 8);
}
buffer.SetSectionsValid(TBuffer3D::kBoundingBox);
}
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.