// @(#)root/geom:$Name: $:$Id: TGeoTrd1.cxx,v 1.31 2005/05/13 16:20:38 brun Exp $
// Author: Andrei Gheata 24/10/01
// TGeoTrd1::Contains() and DistFromInside() implemented by Mihaela Gheata
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//_____________________________________________________________________________
// TGeoTrd1 - a trapezoid with only x length varying with z. It has 4
// parameters, the half length in x at the low z surface, that at the
// high z surface, the half length in y, and in z
//
//_____________________________________________________________________________
//
/*
*/
//
//
/*
*/
//
//
/*
*/
//
//
/*
*/
//
#include "Riostream.h"
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TGeoTrd1.h"
ClassImp(TGeoTrd1)
//_____________________________________________________________________________
TGeoTrd1::TGeoTrd1()
{
// dummy ctor
fDz = fDx1 = fDx2 = fDy = 0;
SetShapeBit(kGeoTrd1);
}
//_____________________________________________________________________________
TGeoTrd1::TGeoTrd1(Double_t dx1, Double_t dx2, Double_t dy, Double_t dz)
:TGeoBBox(0,0,0)
{
// constructor.
SetShapeBit(kGeoTrd1);
fDx1 = dx1;
fDx2 = dx2;
fDy = dy;
fDz = dz;
if ((dx1<0) || (dx2<0) || (dy<0) || (dz<0)) {
SetShapeBit(kGeoRunTimeShape);
printf("trd1 : dx1=%f, dx2=%f, dy=%f, dz=%f\n",
dx1,dx2,dy,dz);
}
else ComputeBBox();
}
//_____________________________________________________________________________
TGeoTrd1::TGeoTrd1(const char *name, Double_t dx1, Double_t dx2, Double_t dy, Double_t dz)
:TGeoBBox(name, 0,0,0)
{
// constructor.
SetShapeBit(kGeoTrd1);
fDx1 = dx1;
fDx2 = dx2;
fDy = dy;
fDz = dz;
if ((dx1<0) || (dx2<0) || (dy<0) || (dz<0)) {
SetShapeBit(kGeoRunTimeShape);
printf("trd1 : dx1=%f, dx2=%f, dy=%f, dz=%f\n",
dx1,dx2,dy,dz);
}
else ComputeBBox();
}
//_____________________________________________________________________________
TGeoTrd1::TGeoTrd1(Double_t *param)
:TGeoBBox(0,0,0)
{
// ctor with an array of parameters
// param[0] = dx1
// param[1] = dx2
// param[2] = dy
// param[3] = dz
SetShapeBit(kGeoTrd1);
SetDimensions(param);
if ((fDx1<0) || (fDx2<0) || (fDy<=0) || (fDz<=0)) SetShapeBit(kGeoRunTimeShape);
else ComputeBBox();
}
//_____________________________________________________________________________
TGeoTrd1::~TGeoTrd1()
{
// destructor
}
//_____________________________________________________________________________
void TGeoTrd1::ComputeBBox()
{
// compute bounding box for a trd1
fDX = TMath::Max(fDx1, fDx2);
fDY = fDy;
fDZ = fDz;
memset(fOrigin, 0, 3*sizeof(Double_t));
}
//_____________________________________________________________________________
void TGeoTrd1::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
// Compute normal to closest surface from POINT.
Double_t safe, safemin;
//--- Compute safety first
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t calf = 1./TMath::Sqrt(1.0+fx*fx);
// check Z facettes
safe = safemin = TMath::Abs(fDz-TMath::Abs(point[2]));
norm[0] = norm[1] = 0;
norm[2] = (dir[2]>=0)?1:-1;
if (safe<1E-6) return;
// check X facettes
Double_t distx = 0.5*(fDx1+fDx2)-fx*point[2];
if (distx>=0) {
safe=TMath::Abs(distx-TMath::Abs(point[0]))*calf;
if (safe<safemin) {
safemin = safe;
norm[0] = calf;
norm[1] = 0;
norm[2] = calf*fx;
Double_t dot = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
if (dot<0) norm[0]=-norm[0];
if (safe<1E-6) return;
}
}
// check Y facettes
safe = TMath::Abs(fDy-TMath::Abs(point[1]));
if (safe<safemin) {
norm[0] = norm[2] = 0;
norm[1] = (dir[1]>=0)?1:-1;
}
}
//_____________________________________________________________________________
Bool_t TGeoTrd1::Contains(Double_t *point) const
{
// test if point is inside this shape
// check Z range
if (TMath::Abs(point[2]) > fDz) return kFALSE;
// then y
if (TMath::Abs(point[1]) > fDy) return kFALSE;
// then x
Double_t dx = 0.5*(fDx2*(point[2]+fDz)+fDx1*(fDz-point[2]))/fDz;
if (TMath::Abs(point[0]) > dx) return kFALSE;
return kTRUE;
}
//_____________________________________________________________________________
Double_t TGeoTrd1::DistFromInside(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// Compute distance from inside point to surface of the trd1
// Boundary safe algorithm.
Double_t snxt = TGeoShape::Big();
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point, kTRUE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
//--- Compute safety first
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t cn;
Double_t distx = 0.5*(fDx1+fDx2)-fx*point[2];
//--- Compute distance to this shape
// first check if Z facettes are crossed
Double_t dist[3];
for (Int_t i=0; i<3; i++) dist[i]=TGeoShape::Big();
if (dir[2]<0) {
dist[0]=-(point[2]+fDz)/dir[2];
} else if (dir[2]>0) {
dist[0]=(fDz-point[2])/dir[2];
}
if (dist[0]<=0) return 0.0;
// now check X facettes
cn = -dir[0]+fx*dir[2];
if (cn>0) {
dist[1] = point[0]+distx;
if (dist[1]<=0) return 0.0;
dist[1] /= cn;
}
cn = dir[0]+fx*dir[2];
if (cn>0) {
Double_t s = distx-point[0];
if (s<=0) return 0.0;
s /= cn;
if (s<dist[1]) dist[1] = s;
}
// now check Y facettes
if (dir[1]<0) {
dist[2]=-(point[1]+fDy)/dir[1];
} else if (dir[1]>0) {
dist[2]=(fDy-point[1])/dir[1];
}
if (dist[2]<=0) return 0.0;
snxt = dist[TMath::LocMin(3,dist)];
return snxt;
}
//_____________________________________________________________________________
void TGeoTrd1::GetVisibleCorner(Double_t *point, Double_t *vertex, Double_t *normals) const
{
// get the most visible corner from outside point and the normals
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t calf = 1./TMath::Sqrt(1.0+fx*fx);
Double_t salf = calf*fx;
// check visibility of X faces
Double_t distx = 0.5*(fDx1+fDx2)-fx*point[2];
memset(normals, 0, 9*sizeof(Double_t));
TGeoTrd1 *trd1 = (TGeoTrd1*)this;
if (point[0]>distx) {
// hi x face visible
trd1->SetShapeBit(kGeoVisX);
normals[0]=calf;
normals[2]=salf;
} else {
trd1->SetShapeBit(kGeoVisX, kFALSE);
normals[0]=-calf;
normals[2]=salf;
}
if (point[1]>fDy) {
// hi y face visible
trd1->SetShapeBit(kGeoVisY);
normals[4]=1;
} else {
trd1->SetShapeBit(kGeoVisY, kFALSE);
normals[4]=-1;
}
if (point[2]>fDz) {
// hi z face visible
trd1->SetShapeBit(kGeoVisZ);
normals[8]=1;
} else {
trd1->SetShapeBit(kGeoVisZ, kFALSE);
normals[8]=-1;
}
SetVertex(vertex);
}
//_____________________________________________________________________________
void TGeoTrd1::GetOppositeCorner(Double_t * /*point*/, Int_t inorm, Double_t *vertex, Double_t *normals) const
{
// get the opposite corner of the intersected face
TGeoTrd1 *trd1 = (TGeoTrd1*)this;
if (inorm != 0) {
// change x face
trd1->SetShapeBit(kGeoVisX, !TestShapeBit(kGeoVisX));
normals[0]=-normals[0];
}
if (inorm != 1) {
// change y face
trd1->SetShapeBit(kGeoVisY, !TestShapeBit(kGeoVisY));
normals[4]=-normals[4];
}
if (inorm != 2) {
// hi z face visible
trd1->SetShapeBit(kGeoVisZ, !TestShapeBit(kGeoVisZ));
normals[8]=-normals[8];
}
SetVertex(vertex);
}
//_____________________________________________________________________________
Double_t TGeoTrd1::DistFromOutside(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// Compute distance from outside point to surface of the trd1
// Boundary safe algorithm
Double_t snxt = TGeoShape::Big();
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point, kFALSE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
// find a visible face
Double_t xnew,ynew,znew;
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t cn;
Double_t distx = 0.5*(fDx1+fDx2)-fx*point[2];
Bool_t in = kTRUE;
Double_t safx = distx-TMath::Abs(point[0]);
Double_t safy = fDy-TMath::Abs(point[1]);
Double_t safz = fDz-TMath::Abs(point[2]);
//--- Compute distance to this shape
// first check if Z facettes are crossed
if (point[2]<=-fDz) {
if (dir[2]<=0) return TGeoShape::Big();
in = kFALSE;
snxt = -(fDz+point[2])/dir[2];
// find extrapolated X and Y
xnew = point[0]+snxt*dir[0];
if (TMath::Abs(xnew) <= fDx1) {
ynew = point[1]+snxt*dir[1];
if (TMath::Abs(ynew) <= fDy) return snxt;
}
} else if (point[2]>=fDz) {
if (dir[2]>=0) return TGeoShape::Big();
in = kFALSE;
snxt = (fDz-point[2])/dir[2];
// find extrapolated X and Y
xnew = point[0]+snxt*dir[0];
if (TMath::Abs(xnew) <= fDx2) {
ynew = point[1]+snxt*dir[1];
if (TMath::Abs(ynew) <= fDy) return snxt;
}
}
// check if X facettes are crossed
if (point[0]<=-distx) {
cn = -dir[0]+fx*dir[2];
if (cn>=0) return TGeoShape::Big();
in = kFALSE;
snxt = (point[0]+distx)/cn;
// find extrapolated Y and Z
ynew = point[1]+snxt*dir[1];
if (TMath::Abs(ynew) <= fDy) {
znew = point[2]+snxt*dir[2];
if (TMath::Abs(znew) <= fDz) return snxt;
}
}
if (point[0]>=distx) {
cn = dir[0]+fx*dir[2];
if (cn>=0) return TGeoShape::Big();
in = kFALSE;
snxt = (distx-point[0])/cn;
// find extrapolated Y and Z
ynew = point[1]+snxt*dir[1];
if (TMath::Abs(ynew) < fDy) {
znew = point[2]+snxt*dir[2];
if (TMath::Abs(znew) < fDz) return snxt;
}
}
// finally check Y facettes
if (point[1]<=-fDy) {
cn = -dir[1];
if (cn>=0) return TGeoShape::Big();
in = kFALSE;
snxt = (point[1]+fDy)/cn;
// find extrapolated X and Z
znew = point[2]+snxt*dir[2];
if (TMath::Abs(znew) < fDz) {
xnew = point[0]+snxt*dir[0];
Double_t dx = 0.5*(fDx1+fDx2)-fx*znew;
if (TMath::Abs(xnew) < dx) return snxt;
}
} else if (point[1]>=fDy) {
cn = dir[1];
if (cn>=0) return TGeoShape::Big();
in = kFALSE;
snxt = (fDy-point[1])/cn;
// find extrapolated X and Z
znew = point[2]+snxt*dir[2];
if (TMath::Abs(znew) < fDz) {
xnew = point[0]+snxt*dir[0];
Double_t dx = 0.5*(fDx1+fDx2)-fx*znew;
if (TMath::Abs(xnew) < dx) return snxt;
}
}
if (!in) return TGeoShape::Big();
// Point actually inside
if (safz<safx && safz<safy) {
if (point[2]*dir[2]>=0) return TGeoShape::Big();
return 0.0;
}
if (safy<safx) {
if (point[1]*dir[1]>=0) return TGeoShape::Big();
return 0.0;
}
cn = TMath::Sign(1.0,point[0])*dir[0]+fx*dir[2];
if (cn>=0) return TGeoShape::Big();
return 0.0;
}
//_____________________________________________________________________________
TGeoVolume *TGeoTrd1::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
Double_t start, Double_t step)
{
//--- Divide this trd1 shape belonging to volume "voldiv" into ndiv volumes
// called divname, from start position with the given step. Returns pointer
// to created division cell volume in case of Y divisions. For Z divisions just
// return the pointer to the volume to be divided. In case a wrong
// division axis is supplied, returns pointer to volume that was divided.
TGeoShape *shape; //--- shape to be created
TGeoVolume *vol; //--- division volume to be created
TGeoVolumeMulti *vmulti; //--- generic divided volume
TGeoPatternFinder *finder; //--- finder to be attached
TString opt = ""; //--- option to be attached
Double_t zmin, zmax, dx1n, dx2n;
Int_t id;
Double_t end = start+ndiv*step;
switch (iaxis) {
case 1:
Warning("Divide", "dividing a Trd1 on X not implemented");
return 0;
case 2:
finder = new TGeoPatternY(voldiv, ndiv, start, end);
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
shape = new TGeoTrd1(fDx1, fDx2, step/2, fDz);
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
vmulti->AddVolume(vol);
opt = "Y";
for (id=0; id<ndiv; id++) {
voldiv->AddNodeOffset(vol, id, start+step/2+id*step, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
case 3:
finder = new TGeoPatternZ(voldiv, ndiv, start, end);
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
for (id=0; id<ndiv; id++) {
zmin = start+id*step;
zmax = start+(id+1)*step;
dx1n = 0.5*(fDx1*(fDz-zmin)+fDx2*(fDz+zmin))/fDz;
dx2n = 0.5*(fDx1*(fDz-zmax)+fDx2*(fDz+zmax))/fDz;
shape = new TGeoTrd1(dx1n, dx2n, fDy, step/2.);
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti->AddVolume(vol);
opt = "Z";
voldiv->AddNodeOffset(vol, id, start+step/2+id*step, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
default:
Error("Divide", "Wrong axis type for division");
return 0;
}
}
//_____________________________________________________________________________
Double_t TGeoTrd1::GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
{
// Get range of shape for a given axis.
xlo = 0;
xhi = 0;
Double_t dx = 0;
switch (iaxis) {
case 2:
xlo = -fDy;
xhi = fDy;
dx = xhi-xlo;
return dx;
case 3:
xlo = -fDz;
xhi = fDz;
dx = xhi-xlo;
return dx;
}
return dx;
}
//_____________________________________________________________________________
void TGeoTrd1::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2
TGeoBBox::GetBoundingCylinder(param);
}
//_____________________________________________________________________________
Int_t TGeoTrd1::GetFittingBox(const TGeoBBox *parambox, TGeoMatrix *mat, Double_t &dx, Double_t &dy, Double_t &dz) const
{
// Fills real parameters of a positioned box inside this. Returns 0 if successfull.
dx=dy=dz=0;
if (mat->IsRotation()) {
Error("GetFittingBox", "cannot handle parametrized rotated volumes");
return 1; // ### rotation not accepted ###
}
//--> translate the origin of the parametrized box to the frame of this box.
Double_t origin[3];
mat->LocalToMaster(parambox->GetOrigin(), origin);
if (!Contains(origin)) {
Error("GetFittingBox", "wrong matrix - parametrized box is outside this");
return 1; // ### wrong matrix ###
}
//--> now we have to get the valid range for all parametrized axis
Double_t dd[3];
dd[0] = parambox->GetDX();
dd[1] = parambox->GetDY();
dd[2] = parambox->GetDZ();
//-> check if Z range is fixed
if (dd[2]<0) {
dd[2] = TMath::Min(origin[2]+fDz, fDz-origin[2]);
if (dd[2]<0) {
Error("GetFittingBox", "wrong matrix");
return 1;
}
}
//-> check if Y range is fixed
if (dd[1]<0) {
dd[1] = TMath::Min(origin[1]+fDy, fDy-origin[1]);
if (dd[1]<0) {
Error("GetFittingBox", "wrong matrix");
return 1;
}
}
if (dd[0]>=0) {
dx = dd[0];
dy = dd[1];
dz = dd[2];
return 0;
}
//-> check now range at Z = origin[2] +/- dd[2]
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t dx0 = 0.5*(fDx1+fDx2);
Double_t z=origin[2]-dd[2];
dd[0] = dx0-fx*z-origin[0];
z=origin[2]+dd[2];
dd[0] = TMath::Min(dd[0], dx0-fx*z-origin[0]);
if (dd[0]<0) {
Error("GetFittingBox", "wrong matrix");
return 1;
}
dx = dd[0];
dy = dd[1];
dz = dd[2];
return 0;
}
//_____________________________________________________________________________
TGeoShape *TGeoTrd1::GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix * /*mat*/) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
if (!TestShapeBit(kGeoRunTimeShape)) return 0;
if (!mother->TestShapeBit(kGeoTrd1)) {
Error("GetMakeRuntimeShape", "invalid mother");
return 0;
}
Double_t dx1, dx2, dy, dz;
if (fDx1<0) dx1=((TGeoTrd1*)mother)->GetDx1();
else dx1=fDx1;
if (fDx2<0) dx2=((TGeoTrd1*)mother)->GetDx2();
else dx2=fDx2;
if (fDy<0) dy=((TGeoTrd1*)mother)->GetDy();
else dy=fDy;
if (fDz<0) dz=((TGeoTrd1*)mother)->GetDz();
else dz=fDz;
return (new TGeoTrd1(dx1, dx2, dy, dz));
}
//_____________________________________________________________________________
void TGeoTrd1::InspectShape() const
{
// print shape parameters
printf("*** Shape %s: TGeoTrd1 ***\n", GetName());
printf(" dx1 = %11.5f\n", fDx1);
printf(" dx2 = %11.5f\n", fDx2);
printf(" dy = %11.5f\n", fDy);
printf(" dz = %11.5f\n", fDz);
printf(" Bounding box:\n");
TGeoBBox::InspectShape();
}
//_____________________________________________________________________________
Double_t TGeoTrd1::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t saf[3];
//--- Compute safety first
// check Z facettes
saf[0] = fDz-TMath::Abs(point[2]);
Double_t fx = 0.5*(fDx1-fDx2)/fDz;
Double_t calf = 1./TMath::Sqrt(1.0+fx*fx);
// check X facettes
Double_t distx = 0.5*(fDx1+fDx2)-fx*point[2];
if (distx<0) saf[1]=TGeoShape::Big();
else saf[1]=(distx-TMath::Abs(point[0]))*calf;
// check Y facettes
saf[2] = fDy-TMath::Abs(point[1]);
if (in) return saf[TMath::LocMin(3,saf)];
for (Int_t i=0; i<3; i++) saf[i]=-saf[i];
return saf[TMath::LocMax(3,saf)];
}
//_____________________________________________________________________________
void TGeoTrd1::SavePrimitive(ofstream &out, Option_t * /*option*/)
{
// Save a primitive as a C++ statement(s) on output stream "out".
if (TObject::TestBit(kGeoSavePrimitive)) return;
out << " // Shape: " << GetName() << " type: " << ClassName() << endl;
out << " dx1 = " << fDx1 << ";" << endl;
out << " dx2 = " << fDx2 << ";" << endl;
out << " dy = " << fDy << ";" << endl;
out << " dz = " << fDZ << ";" << endl;
out << " TGeoShape *" << GetPointerName() << " = new TGeoTrd1(\"" << GetName() << "\", dx1,dx2,dy,dz);" << endl;
TObject::SetBit(TGeoShape::kGeoSavePrimitive);
}
//_____________________________________________________________________________
void TGeoTrd1::SetDimensions(Double_t *param)
{
// set trd1 params in one step :
fDx1 = param[0];
fDx2 = param[1];
fDy = param[2];
fDz = param[3];
ComputeBBox();
}
//_____________________________________________________________________________
void TGeoTrd1::SetVertex(Double_t *vertex) const
{
// set vertex of a corner according to visibility flags
if (TestShapeBit(kGeoVisX)) {
if (TestShapeBit(kGeoVisZ)) {
vertex[0] = fDx2;
vertex[2] = fDz;
vertex[1] = (TestShapeBit(kGeoVisY))?fDy:-fDy;
} else {
vertex[0] = fDx1;
vertex[2] = -fDz;
vertex[1] = (TestShapeBit(kGeoVisY))?fDy:-fDy;
}
} else {
if (TestShapeBit(kGeoVisZ)) {
vertex[0] = -fDx2;
vertex[2] = fDz;
vertex[1] = (TestShapeBit(kGeoVisY))?fDy:-fDy;
} else {
vertex[0] = -fDx1;
vertex[2] = -fDz;
vertex[1] = (TestShapeBit(kGeoVisY))?fDy:-fDy;
}
}
}
//_____________________________________________________________________________
void TGeoTrd1::SetPoints(Double_t *points) const
{
// create arb8 mesh points
if (!points) return;
points[ 0] = -fDx1; points[ 1] = -fDy; points[ 2] = -fDz;
points[ 3] = -fDx1; points[ 4] = fDy; points[ 5] = -fDz;
points[ 6] = fDx1; points[ 7] = fDy; points[ 8] = -fDz;
points[ 9] = fDx1; points[10] = -fDy; points[11] = -fDz;
points[12] = -fDx2; points[13] = -fDy; points[14] = fDz;
points[15] = -fDx2; points[16] = fDy; points[17] = fDz;
points[18] = fDx2; points[19] = fDy; points[20] = fDz;
points[21] = fDx2; points[22] = -fDy; points[23] = fDz;
}
//_____________________________________________________________________________
void TGeoTrd1::SetPoints(Float_t *points) const
{
// create arb8 mesh points
if (!points) return;
points[ 0] = -fDx1; points[ 1] = -fDy; points[ 2] = -fDz;
points[ 3] = -fDx1; points[ 4] = fDy; points[ 5] = -fDz;
points[ 6] = fDx1; points[ 7] = fDy; points[ 8] = -fDz;
points[ 9] = fDx1; points[10] = -fDy; points[11] = -fDz;
points[12] = -fDx2; points[13] = -fDy; points[14] = fDz;
points[15] = -fDx2; points[16] = fDy; points[17] = fDz;
points[18] = fDx2; points[19] = fDy; points[20] = fDz;
points[21] = fDx2; points[22] = -fDy; points[23] = fDz;
}
//_____________________________________________________________________________
void TGeoTrd1::Sizeof3D() const
{
// fill size of this 3-D object
TGeoBBox::Sizeof3D();
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.