// @(#):$Name: $:$Id: TGeoBoolNode.cxx,v 1.22 2005/05/25 14:25:16 brun Exp $
// Author: Andrei Gheata 30/05/02
// TGeoBoolNode::Contains and parser implemented by Mihaela Gheata
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#include "Riostream.h"
#include "TGeoCompositeShape.h"
#include "TGeoMatrix.h"
#include "TGeoManager.h"
#include "TGeoBoolNode.h"
#include "TVirtualPad.h"
#include "TVirtualViewer3D.h"
#include "TBuffer3D.h"
#include "TBuffer3DTypes.h"
// statics and globals
ClassImp(TGeoBoolNode)
//-----------------------------------------------------------------------------
TGeoBoolNode::TGeoBoolNode()
{
// Default constructor
fLeft = 0;
fRight = 0;
fLeftMat = 0;
fRightMat = 0;
fSelected = 0;
}
//-----------------------------------------------------------------------------
TGeoBoolNode::TGeoBoolNode(const char *expr1, const char *expr2)
{
// constructor
fLeft = 0;
fRight = 0;
fLeftMat = 0;
fRightMat = 0;
fSelected = 0;
if (!MakeBranch(expr1, kTRUE)) {
return;
}
if (!MakeBranch(expr2, kFALSE)) {
return;
}
}
//-----------------------------------------------------------------------------
TGeoBoolNode::TGeoBoolNode(TGeoShape *left, TGeoShape *right, TGeoMatrix *lmat, TGeoMatrix *rmat)
{
fSelected = 0;
fLeft = left;
fRight = right;
fLeftMat = lmat;
if (!fLeftMat) fLeftMat = gGeoIdentity;
else fLeftMat->RegisterYourself();
fRightMat = rmat;
if (!fRightMat) fRightMat = gGeoIdentity;
else fRightMat->RegisterYourself();
if (!fLeft) {
Error("ctor", "left shape is NULL");
return;
}
if (!fRight) {
Error("ctor", "right shape is NULL");
return;
}
}
//-----------------------------------------------------------------------------
TGeoBoolNode::~TGeoBoolNode()
{
// Destructor
// --- deletion of components handled by TGeoManager class.
}
//-----------------------------------------------------------------------------
Bool_t TGeoBoolNode::MakeBranch(const char *expr, Bool_t left)
{
// Expands the boolean expression either on left or right branch, creating
// component elements (composite shapes and boolean nodes). Returns true on success.
TString sleft, sright, stransf;
Int_t boolop = TGeoManager::Parse(expr, sleft, sright, stransf);
if (boolop<0) {
Error("MakeBranch", "invalid expresion");
return kFALSE;
}
TGeoShape *shape = 0;
TGeoMatrix *mat;
TString newshape;
if (stransf.Length() == 0) {
mat = gGeoIdentity;
} else {
mat = (TGeoMatrix*)gGeoManager->GetListOfMatrices()->FindObject(stransf.Data());
}
if (!mat) {
Error("MakeBranch", "transformation %s not found", stransf.Data());
return kFALSE;
}
switch (boolop) {
case 0:
// elementary shape
shape = (TGeoShape*)gGeoManager->GetListOfShapes()->FindObject(sleft.Data());
if (!shape) {
Error("MakeBranch", "shape %s not found", sleft.Data());
return kFALSE;
}
break;
case 1:
// composite shape - union
newshape = sleft;
newshape += "+";
newshape += sright;
shape = new TGeoCompositeShape(newshape.Data());
break;
case 2:
// composite shape - difference
newshape = sleft;
newshape += "-";
newshape += sright;
shape = new TGeoCompositeShape(newshape.Data());
break;
case 3:
// composite shape - intersection
newshape = sleft;
newshape += "*";
newshape += sright;
shape = new TGeoCompositeShape(newshape.Data());
break;
}
if (boolop && !shape->IsValid()) {
Error("MakeBranch", "Shape %s not valid", newshape.Data());
delete shape;
return kFALSE;
}
if (left) {
fLeft = shape;
fLeftMat = mat;
} else {
fRight = shape;
fRightMat = mat;
}
return kTRUE;
}
//-----------------------------------------------------------------------------
void TGeoBoolNode::Paint(Option_t * option)
{
TVirtualViewer3D * viewer = gPad->GetViewer3D();
if (!viewer) return;
// Components of composite shape hierarchies for local frame viewers are painted
// in coordinate frame of the top level composite shape. So we force
// conversion to this. See TGeoPainter::PaintNode for loading of GLMatrix.
Bool_t localFrame = kFALSE; //viewer->PreferLocalFrame();
TGeoHMatrix *glmat = gGeoManager->GetGLMatrix();
TGeoHMatrix mat;
mat = glmat; // keep a copy
// Now perform fetch and add of the two components buffers.
// Note we assume that composite shapes are always completely added
// so don't bother to get addDaughters flag from viewer->AddObject()
// Setup matrix and fetch/add the left component buffer
glmat->Multiply(fLeftMat);
//fLeft->Paint(option);
if (TGeoCompositeShape *left = dynamic_cast<TGeoCompositeShape *>(fLeft)) left->PaintComposite(option);
else {
const TBuffer3D & leftBuffer = fLeft->GetBuffer3D(TBuffer3D::kAll, localFrame);
viewer->AddObject(leftBuffer);
}
// Setup matrix and fetch/add the right component buffer
*glmat = &mat;
glmat->Multiply(fRightMat);
//fRight->Paint(option);
if (TGeoCompositeShape *right = dynamic_cast<TGeoCompositeShape *>(fRight)) right->PaintComposite(option);
else {
const TBuffer3D & rightBuffer = fRight->GetBuffer3D(TBuffer3D::kAll, localFrame);
viewer->AddObject(rightBuffer);
}
*glmat = &mat;
}
//_____________________________________________________________________________
void TGeoBoolNode::RegisterMatrices()
{
// Register all matrices of the boolean node and descendents.
if (!fLeftMat->IsIdentity()) fLeftMat->RegisterYourself();
if (!fRightMat->IsIdentity()) fRightMat->RegisterYourself();
if (fLeft->IsComposite()) ((TGeoCompositeShape*)fLeft)->GetBoolNode()->RegisterMatrices();
if (fRight->IsComposite()) ((TGeoCompositeShape*)fRight)->GetBoolNode()->RegisterMatrices();
}
//_____________________________________________________________________________
void TGeoBoolNode::SavePrimitive(ofstream &out, Option_t *option)
{
// Save a primitive as a C++ statement(s) on output stream "out".
fLeft->SavePrimitive(out,option);
fRight->SavePrimitive(out,option);
if (!fLeftMat->IsIdentity()) {
fLeftMat->RegisterYourself();
fLeftMat->SavePrimitive(out,option);
}
if (!fRightMat->IsIdentity()) {
fRightMat->RegisterYourself();
fRightMat->SavePrimitive(out,option);
}
}
//-----------------------------------------------------------------------------
void TGeoBoolNode::Sizeof3D() const
{
// register size of this 3D object
fLeft->Sizeof3D();
fRight->Sizeof3D();
}
ClassImp(TGeoUnion)
//-----------------------------------------------------------------------------
void TGeoUnion::Paint(Option_t *option)
{
TVirtualViewer3D *viewer = gPad->GetViewer3D();
if (!viewer) {
Error("Paint", "gPad->GetViewer3D() returned 0, cannot work with composite!\n");
return;
}
viewer->AddCompositeOp(TBuffer3D::kCSUnion);
TGeoBoolNode::Paint(option);
}
//-----------------------------------------------------------------------------
TGeoUnion::TGeoUnion()
{
// Default constructor
}
//-----------------------------------------------------------------------------
TGeoUnion::TGeoUnion(const char *expr1, const char *expr2)
:TGeoBoolNode(expr1, expr2)
{
// Constructor
}
//-----------------------------------------------------------------------------
TGeoUnion::TGeoUnion(TGeoShape *left, TGeoShape *right, TGeoMatrix *lmat, TGeoMatrix *rmat)
:TGeoBoolNode(left,right,lmat,rmat)
{
// Constructor providing pointers to components
if (left->TestShapeBit(TGeoShape::kGeoHalfSpace) || right->TestShapeBit(TGeoShape::kGeoHalfSpace)) {
Fatal("TGeoUnion", "Unions with a half-space (%s + %s) not allowed", left->GetName(), right->GetName());
}
}
//-----------------------------------------------------------------------------
TGeoUnion::~TGeoUnion()
{
// Destructor
// --- deletion of components handled by TGeoManager class.
}
//-----------------------------------------------------------------------------
void TGeoUnion::ComputeBBox(Double_t &dx, Double_t &dy, Double_t &dz, Double_t *origin)
{
// Compute bounding box corresponding to a union of two shapes.
if (((TGeoBBox*)fLeft)->IsNullBox()) fLeft->ComputeBBox();
if (((TGeoBBox*)fRight)->IsNullBox()) fRight->ComputeBBox();
Double_t vert[48];
Double_t pt[3];
Int_t i;
Double_t xmin, xmax, ymin, ymax, zmin, zmax;
xmin = ymin = zmin = TGeoShape::Big();
xmax = ymax = zmax = -TGeoShape::Big();
((TGeoBBox*)fLeft)->SetBoxPoints(&vert[0]);
((TGeoBBox*)fRight)->SetBoxPoints(&vert[24]);
for (i=0; i<8; i++) {
fLeftMat->LocalToMaster(&vert[3*i], &pt[0]);
if (pt[0]<xmin) xmin=pt[0];
if (pt[0]>xmax) xmax=pt[0];
if (pt[1]<ymin) ymin=pt[1];
if (pt[1]>ymax) ymax=pt[1];
if (pt[2]<zmin) zmin=pt[2];
if (pt[2]>zmax) zmax=pt[2];
}
for (i=8; i<16; i++) {
fRightMat->LocalToMaster(&vert[3*i], &pt[0]);
if (pt[0]<xmin) xmin=pt[0];
if (pt[0]>xmax) xmax=pt[0];
if (pt[1]<ymin) ymin=pt[1];
if (pt[1]>ymax) ymax=pt[1];
if (pt[2]<zmin) zmin=pt[2];
if (pt[2]>zmax) zmax=pt[2];
}
dx = 0.5*(xmax-xmin);
origin[0] = 0.5*(xmin+xmax);
dy = 0.5*(ymax-ymin);
origin[1] = 0.5*(ymin+ymax);
dz = 0.5*(zmax-zmin);
origin[2] = 0.5*(zmin+zmax);
}
//-----------------------------------------------------------------------------
Bool_t TGeoUnion::Contains(Double_t *point) const
{
// Find if a union of two shapes contains a given point
Double_t local[3];
fLeftMat->MasterToLocal(point, &local[0]);
Bool_t inside = fLeft->Contains(&local[0]);
if (inside) return kTRUE;
fRightMat->MasterToLocal(point, &local[0]);
inside = fRight->Contains(&local[0]);
return inside;
}
//_____________________________________________________________________________
void TGeoUnion::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
norm[0] = norm[1] = 0.;
norm[2] = 1.;
Double_t local[3];
Double_t ldir[3], lnorm[3];
if (fSelected == 1) {
fLeftMat->MasterToLocal(point, local);
fLeftMat->MasterToLocalVect(dir, ldir);
fLeft->ComputeNormal(local,ldir,lnorm);
fLeftMat->LocalToMasterVect(lnorm, norm);
return;
}
if (fSelected == 2) {
fRightMat->MasterToLocal(point, local);
fRightMat->MasterToLocalVect(dir, ldir);
fRight->ComputeNormal(local,ldir,lnorm);
fRightMat->LocalToMasterVect(lnorm, norm);
return;
}
fLeftMat->MasterToLocal(point, local);
if (fLeft->Contains(local)) {
fLeftMat->MasterToLocalVect(dir, ldir);
fLeft->ComputeNormal(local,ldir,lnorm);
fLeftMat->LocalToMasterVect(lnorm, norm);
return;
}
fRightMat->MasterToLocal(point, local);
if (fRight->Contains(local)) {
fRightMat->MasterToLocalVect(dir, ldir);
fRight->ComputeNormal(local,ldir,lnorm);
fRightMat->LocalToMasterVect(lnorm, norm);
return;
}
// Propagate forward/backward to see which of the components is intersected first
local[0] = point[0] + 1E-5*dir[0];
local[1] = point[1] + 1E-5*dir[1];
local[2] = point[2] + 1E-5*dir[2];
if (!Contains(local)) {
local[0] = point[0] - 1E-5*dir[0];
local[1] = point[1] - 1E-5*dir[1];
local[2] = point[2] - 1E-5*dir[2];
if (!Contains(local)) return;
}
ComputeNormal(local,dir,norm);
}
//-----------------------------------------------------------------------------
Int_t TGeoUnion::DistanceToPrimitive(Int_t /*px*/, Int_t /*py*/)
{
// Compute minimum distance to shape vertices
return 9999;
}
//-----------------------------------------------------------------------------
Double_t TGeoUnion::DistFromInside(Double_t *point, Double_t *dir, Int_t iact,
Double_t step, Double_t *safe) const
{
// Compute distance from a given point to outside.
// printf("Point is : %g, %g, %g\n", point[0], point[1], point[2]);
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point,kTRUE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
Double_t local[3], master[3], ldir[3], rdir[3];
memcpy(master, point, 3*sizeof(Double_t));
Int_t i;
TGeoBoolNode *node = (TGeoBoolNode*)this;
Double_t d1=0., d2=0., snxt=0.;
fLeftMat->MasterToLocalVect(dir, ldir);
fRightMat->MasterToLocalVect(dir, rdir);
fLeftMat->MasterToLocal(point, local);
Bool_t inside1 = fLeft->Contains(local);
if (inside1) d1 = fLeft->DistFromInside(local, ldir, 3);
fRightMat->MasterToLocal(point, local);
Bool_t inside2 = fRight->Contains(local);
if (inside2) d2 = fRight->DistFromInside(local, rdir, 3);
while (inside1 || inside2) {
if (inside1 && inside2) {
if (d1<d2) {
snxt += d1;
node->SetSelected(1);
// propagate to exit of left shape
inside1 = kFALSE;
for (i=0; i<3; i++) master[i] += d1*dir[i];
// check if propagated point is in right shape
fRightMat->MasterToLocal(master, local);
inside2 = fRight->Contains(local);
if (inside2) d2 = fRight->DistFromInside(local, rdir, 3);
} else {
snxt += d2;
node->SetSelected(2);
// propagate to exit of right shape
inside2 = kFALSE;
for (i=0; i<3; i++) master[i] += d2*dir[i];
// check if propagated point is in left shape
fLeftMat->MasterToLocal(master, local);
inside1 = fLeft->Contains(local);
if (inside1) d1 = fLeft->DistFromInside(local, ldir, 3);
}
}
if (inside1) {
snxt += d1;
node->SetSelected(1);
// propagate to exit of left shape
inside1 = kFALSE;
for (i=0; i<3; i++) master[i] += d1*dir[i];
// check if propagated point is in right shape
fRightMat->MasterToLocal(master, local);
inside2 = fRight->Contains(local);
if (inside2) d2 = fRight->DistFromInside(local, rdir, 3);
}
if (inside2) {
snxt += d2;
node->SetSelected(2);
// propagate to exit of right shape
inside2 = kFALSE;
for (i=0; i<3; i++) master[i] += d2*dir[i];
// check if propagated point is in left shape
fLeftMat->MasterToLocal(master, local);
inside1 = fLeft->Contains(local);
if (inside1) d1 = fLeft->DistFromInside(local, ldir, 3);
}
}
return snxt;
}
//-----------------------------------------------------------------------------
Double_t TGeoUnion::DistFromOutside(Double_t *point, Double_t *dir, Int_t iact,
Double_t step, Double_t *safe) const
{
// Compute distance from a given point to inside.
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point,kFALSE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
TGeoBoolNode *node = (TGeoBoolNode*)this;
Double_t local[3], ldir[3], rdir[3];
Double_t d1, d2, snxt;
fLeftMat->MasterToLocal(point, &local[0]);
fLeftMat->MasterToLocalVect(dir, &ldir[0]);
fRightMat->MasterToLocalVect(dir, &rdir[0]);
d1 = fLeft->DistFromOutside(&local[0], &ldir[0], iact, step, safe);
fRightMat->MasterToLocal(point, &local[0]);
d2 = fRight->DistFromOutside(&local[0], &rdir[0], iact, step, safe);
if (d1<d2) {
snxt = d1;
node->SetSelected(1);
} else {
snxt = d2;
node->SetSelected(2);
}
return snxt;
}
//-----------------------------------------------------------------------------
Int_t TGeoUnion::GetNpoints() const
{
// Returns number of vertices for the composite shape described by this union.
return 0;
}
//-----------------------------------------------------------------------------
void TGeoUnion::SetPoints(Double_t * /*points*/) const
{
// Fill buffer with shape vertices.
}
//-----------------------------------------------------------------------------
Double_t TGeoUnion::Safety(Double_t *point, Bool_t) const
{
// Compute safety distance for a union node;
Double_t local1[3], local2[3];
fLeftMat->MasterToLocal(point,local1);
Bool_t in1 = fLeft->Contains(local1);
fRightMat->MasterToLocal(point,local2);
Bool_t in2 = fRight->Contains(local2);
Double_t saf1 = fLeft->Safety(local1, in1);
Double_t saf2 = fRight->Safety(local2, in2);
if (in1 && in2) return TMath::Min(saf1, saf2);
if (in1) return saf1;
if (in2) return saf2;
return TMath::Min(saf1,saf2);
}
//_____________________________________________________________________________
void TGeoUnion::SavePrimitive(ofstream &out, Option_t *option)
{
// Save a primitive as a C++ statement(s) on output stream "out".
TGeoBoolNode::SavePrimitive(out,option);
out << " pBoolNode = new TGeoUnion(";
out << fLeft->GetPointerName() << ",";
out << fRight->GetPointerName() << ",";
if (!fLeftMat->IsIdentity()) out << fLeftMat->GetPointerName() << ",";
else out << "0,";
if (!fRightMat->IsIdentity()) out << fRightMat->GetPointerName() << ");" << endl;
else out << "0);" << endl;
}
//-----------------------------------------------------------------------------
void TGeoUnion::SetPoints(Float_t * /*points*/) const
{
// Fill buffer with shape vertices.
}
//-----------------------------------------------------------------------------
void TGeoUnion::Sizeof3D() const
{
// Register 3D size of this shape.
TGeoBoolNode::Sizeof3D();
}
ClassImp(TGeoSubtraction)
//-----------------------------------------------------------------------------
void TGeoSubtraction::Paint(Option_t *option)
{
TVirtualViewer3D *viewer = gPad->GetViewer3D();
if (!viewer) {
Error("Paint", "gPad->GetViewer3D() returned 0, cannot work with composite!\n");
return;
}
viewer->AddCompositeOp(TBuffer3D::kCSDifference);
TGeoBoolNode::Paint(option);
}
//-----------------------------------------------------------------------------
TGeoSubtraction::TGeoSubtraction()
{
// Default constructor
}
//-----------------------------------------------------------------------------
TGeoSubtraction::TGeoSubtraction(const char *expr1, const char *expr2)
:TGeoBoolNode(expr1, expr2)
{
// Constructor
}
//-----------------------------------------------------------------------------
TGeoSubtraction::TGeoSubtraction(TGeoShape *left, TGeoShape *right, TGeoMatrix *lmat, TGeoMatrix *rmat)
:TGeoBoolNode(left,right,lmat,rmat)
{
// Constructor providing pointers to components
if (left->TestShapeBit(TGeoShape::kGeoHalfSpace)) {
Fatal("TGeoSubstraction", "Substractions from a half-space (%s) not allowed", left->GetName());
}
}
//-----------------------------------------------------------------------------
TGeoSubtraction::~TGeoSubtraction()
{
// Destructor
// --- deletion of components handled by TGeoManager class.
}
//-----------------------------------------------------------------------------
void TGeoSubtraction::ComputeBBox(Double_t &dx, Double_t &dy, Double_t &dz, Double_t *origin)
{
// Compute bounding box corresponding to a subtraction of two shapes.
TGeoBBox *box = (TGeoBBox*)fLeft;
if (box->IsNullBox()) fLeft->ComputeBBox();
Double_t vert[24];
Double_t pt[3];
Int_t i;
Double_t xmin, xmax, ymin, ymax, zmin, zmax;
xmin = ymin = zmin = TGeoShape::Big();
xmax = ymax = zmax = -TGeoShape::Big();
box->SetBoxPoints(&vert[0]);
for (i=0; i<8; i++) {
fLeftMat->LocalToMaster(&vert[3*i], &pt[0]);
if (pt[0]<xmin) xmin=pt[0];
if (pt[0]>xmax) xmax=pt[0];
if (pt[1]<ymin) ymin=pt[1];
if (pt[1]>ymax) ymax=pt[1];
if (pt[2]<zmin) zmin=pt[2];
if (pt[2]>zmax) zmax=pt[2];
}
dx = 0.5*(xmax-xmin);
origin[0] = 0.5*(xmin+xmax);
dy = 0.5*(ymax-ymin);
origin[1] = 0.5*(ymin+ymax);
dz = 0.5*(zmax-zmin);
origin[2] = 0.5*(zmin+zmax);
}
//_____________________________________________________________________________
void TGeoSubtraction::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
norm[0] = norm[1] = 0.;
norm[2] = 1.;
Double_t local[3], ldir[3], lnorm[3];
if (fSelected == 1) {
fLeftMat->MasterToLocal(point, local);
fLeftMat->MasterToLocalVect(dir, ldir);
fLeft->ComputeNormal(local,ldir,lnorm);
fLeftMat->LocalToMasterVect(lnorm, norm);
return;
}
if (fSelected == 2) {
fRightMat->MasterToLocal(point, local);
fRightMat->MasterToLocalVect(dir, ldir);
fRight->ComputeNormal(local,ldir,lnorm);
fRightMat->LocalToMasterVect(lnorm, norm);
return;
}
fRightMat->MasterToLocal(point,local);
if (fRight->Contains(local)) {
fRightMat->MasterToLocalVect(dir,ldir);
fRight->ComputeNormal(local,ldir, lnorm);
fRightMat->LocalToMasterVect(lnorm,norm);
return;
}
fLeftMat->MasterToLocal(point,local);
if (!fLeft->Contains(local)) {
fLeftMat->MasterToLocalVect(dir,ldir);
fLeft->ComputeNormal(local,ldir, lnorm);
fLeftMat->LocalToMasterVect(lnorm,norm);
return;
}
// point is inside left shape, but not inside the right
local[0] = point[0]+1E-5*dir[0];
local[1] = point[1]+1E-5*dir[1];
local[2] = point[2]+1E-5*dir[2];
if (Contains(local)) {
local[0] = point[0]-1E-5*dir[0];
local[1] = point[1]-1E-5*dir[1];
local[2] = point[2]-1E-5*dir[2];
if (Contains(local)) return;
}
ComputeNormal(local,dir,norm);
}
//-----------------------------------------------------------------------------
Bool_t TGeoSubtraction::Contains(Double_t *point) const
{
// Find if a subtraction of two shapes contains a given point
Double_t local[3];
fLeftMat->MasterToLocal(point, &local[0]);
Bool_t inside = fLeft->Contains(&local[0]);
if (!inside) return kFALSE;
fRightMat->MasterToLocal(point, &local[0]);
inside = !fRight->Contains(&local[0]);
return inside;
}
//-----------------------------------------------------------------------------
Int_t TGeoSubtraction::DistanceToPrimitive(Int_t /*px*/, Int_t /*py*/)
{
// Compute minimum distance to shape vertices
return 9999;
}
//-----------------------------------------------------------------------------
Double_t TGeoSubtraction::DistFromInside(Double_t *point, Double_t *dir, Int_t iact,
Double_t step, Double_t *safe) const
{
// Compute distance from a given point to outside.
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point,kTRUE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
TGeoBoolNode *node = (TGeoBoolNode*)this;
Double_t local[3], ldir[3], rdir[3];
Double_t d1, d2, snxt=0.;
fLeftMat->MasterToLocal(point, &local[0]);
fLeftMat->MasterToLocalVect(dir, &ldir[0]);
fRightMat->MasterToLocalVect(dir, &rdir[0]);
d1 = fLeft->DistFromInside(&local[0], &ldir[0], iact, step, safe);
fRightMat->MasterToLocal(point, &local[0]);
d2 = fRight->DistFromOutside(&local[0], &rdir[0], iact, step, safe);
if (d1<d2) {
snxt = d1;
node->SetSelected(1);
} else {
snxt = d2;
node->SetSelected(2);
}
return snxt;
}
//-----------------------------------------------------------------------------
Double_t TGeoSubtraction::DistFromOutside(Double_t *point, Double_t *dir, Int_t iact,
Double_t step, Double_t *safe) const
{
// Compute distance from a given point to inside.
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point,kFALSE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
TGeoBoolNode *node = (TGeoBoolNode*)this;
Double_t local[3], master[3], ldir[3], rdir[3];
memcpy(&master[0], point, 3*sizeof(Double_t));
Int_t i;
Double_t d1, d2, snxt=0.;
fRightMat->MasterToLocal(point, &local[0]);
fLeftMat->MasterToLocalVect(dir, &ldir[0]);
fRightMat->MasterToLocalVect(dir, &rdir[0]);
// check if inside '-'
Bool_t inside = fRight->Contains(&local[0]);
Double_t epsil = 0.;
while (1) {
if (inside) {
// propagate to outside of '-'
d1 = fRight->DistFromInside(&local[0], &rdir[0], iact, step, safe);
snxt += d1+epsil;
for (i=0; i<3; i++) master[i] += (d1+1E-8)*dir[i];
epsil = 1.E-8;
// now master outside '-'; check if inside '+'
fLeftMat->MasterToLocal(&master[0], &local[0]);
if (fLeft->Contains(&local[0])) {
node->SetSelected(2);
return snxt;
}
}
// master outside '-' and outside '+' ; find distances to both
fLeftMat->MasterToLocal(&master[0], &local[0]);
d2 = fLeft->DistFromOutside(&local[0], &ldir[0], iact, step, safe);
if (d2>1E20) {
node->SetSelected(0);
return TGeoShape::Big();
}
fRightMat->MasterToLocal(&master[0], &local[0]);
d1 = fRight->DistFromOutside(&local[0], &rdir[0], iact, step, safe);
if (d2<d1) {
node->SetSelected(1);
snxt += d2+epsil;
return snxt;
}
// propagate to '-'
snxt += d1+epsil;
for (i=0; i<3; i++) master[i] += (d1+1E-8)*dir[i];
epsil = 1.E-8;
// now inside '-' and not inside '+'
fRightMat->MasterToLocal(&master[0], &local[0]);
inside = kTRUE;
}
}
//-----------------------------------------------------------------------------
Int_t TGeoSubtraction::GetNpoints() const
{
// Returns number of vertices for the composite shape described by this subtraction.
return 0;
}
//-----------------------------------------------------------------------------
Double_t TGeoSubtraction::Safety(Double_t *point, Bool_t) const
{
// Compute safety distance for a union node;
Double_t local1[3], local2[3];
fLeftMat->MasterToLocal(point,local1);
Bool_t in1 = fLeft->Contains(local1);
fRightMat->MasterToLocal(point,local2);
Bool_t in2 = fRight->Contains(local2);
Double_t saf1 = fLeft->Safety(local1, in1);
Double_t saf2 = fRight->Safety(local2, in2);
if (in1 && in2) return saf2;
if (in1) return TMath::Min(saf1,saf2);
if (in2) return TMath::Max(saf1,saf2);
return saf1;
}
//_____________________________________________________________________________
void TGeoSubtraction::SavePrimitive(ofstream &out, Option_t *option)
{
// Save a primitive as a C++ statement(s) on output stream "out".
TGeoBoolNode::SavePrimitive(out,option);
out << " pBoolNode = new TGeoSubtraction(";
out << fLeft->GetPointerName() << ",";
out << fRight->GetPointerName() << ",";
if (!fLeftMat->IsIdentity()) out << fLeftMat->GetPointerName() << ",";
else out << "0,";
if (!fRightMat->IsIdentity()) out << fRightMat->GetPointerName() << ");" << endl;
else out << "0);" << endl;
}
//-----------------------------------------------------------------------------
void TGeoSubtraction::SetPoints(Double_t * /*points*/) const
{
// Fill buffer with shape vertices.
}
//-----------------------------------------------------------------------------
void TGeoSubtraction::SetPoints(Float_t * /*points*/) const
{
// Fill buffer with shape vertices.
}
//-----------------------------------------------------------------------------
void TGeoSubtraction::Sizeof3D() const
{
// Register 3D size of this shape.
TGeoBoolNode::Sizeof3D();
}
ClassImp(TGeoIntersection)
//-----------------------------------------------------------------------------
void TGeoIntersection::Paint(Option_t *option)
{
TVirtualViewer3D *viewer = gPad->GetViewer3D();
if (!viewer) {
Error("Paint", "gPad->GetViewer3D() returned 0, cannot work with composite!\n");
return;
}
viewer->AddCompositeOp(TBuffer3D::kCSIntersection);
TGeoBoolNode::Paint(option);
}
//-----------------------------------------------------------------------------
TGeoIntersection::TGeoIntersection()
{
// Default constructor
}
//-----------------------------------------------------------------------------
TGeoIntersection::TGeoIntersection(const char *expr1, const char *expr2)
:TGeoBoolNode(expr1, expr2)
{
// Constructor
}
//-----------------------------------------------------------------------------
TGeoIntersection::TGeoIntersection(TGeoShape *left, TGeoShape *right, TGeoMatrix *lmat, TGeoMatrix *rmat)
:TGeoBoolNode(left,right,lmat,rmat)
{
// Constructor providing pointers to components
Bool_t hs1 = (fLeft->TestShapeBit(TGeoShape::kGeoHalfSpace))?kTRUE:kFALSE;
Bool_t hs2 = (fRight->TestShapeBit(TGeoShape::kGeoHalfSpace))?kTRUE:kFALSE;
if (hs1 && hs2) Fatal("ctor", "cannot intersect two half-spaces: %s * %s", left->GetName(), right->GetName());
}
//-----------------------------------------------------------------------------
TGeoIntersection::~TGeoIntersection()
{
// Destructor
// --- deletion of components handled by TGeoManager class.
}
//-----------------------------------------------------------------------------
void TGeoIntersection::ComputeBBox(Double_t &dx, Double_t &dy, Double_t &dz, Double_t *origin)
{
// Compute bounding box corresponding to a intersection of two shapes.
Bool_t hs1 = (fLeft->TestShapeBit(TGeoShape::kGeoHalfSpace))?kTRUE:kFALSE;
Bool_t hs2 = (fRight->TestShapeBit(TGeoShape::kGeoHalfSpace))?kTRUE:kFALSE;
Double_t vert[48];
Double_t pt[3];
Int_t i;
Double_t xmin1, xmax1, ymin1, ymax1, zmin1, zmax1;
Double_t xmin2, xmax2, ymin2, ymax2, zmin2, zmax2;
xmin1 = ymin1 = zmin1 = xmin2 = ymin2 = zmin2 = TGeoShape::Big();
xmax1 = ymax1 = zmax1 = xmax2 = ymax2 = zmax2 = -TGeoShape::Big();
if (!hs1) {
if (((TGeoBBox*)fLeft)->IsNullBox()) fLeft->ComputeBBox();
((TGeoBBox*)fLeft)->SetBoxPoints(&vert[0]);
for (i=0; i<8; i++) {
fLeftMat->LocalToMaster(&vert[3*i], &pt[0]);
if (pt[0]<xmin1) xmin1=pt[0];
if (pt[0]>xmax1) xmax1=pt[0];
if (pt[1]<ymin1) ymin1=pt[1];
if (pt[1]>ymax1) ymax1=pt[1];
if (pt[2]<zmin1) zmin1=pt[2];
if (pt[2]>zmax1) zmax1=pt[2];
}
}
if (!hs2) {
if (((TGeoBBox*)fRight)->IsNullBox()) fRight->ComputeBBox();
((TGeoBBox*)fRight)->SetBoxPoints(&vert[24]);
for (i=8; i<16; i++) {
fRightMat->LocalToMaster(&vert[3*i], &pt[0]);
if (pt[0]<xmin2) xmin2=pt[0];
if (pt[0]>xmax2) xmax2=pt[0];
if (pt[1]<ymin2) ymin2=pt[1];
if (pt[1]>ymax2) ymax2=pt[1];
if (pt[2]<zmin2) zmin2=pt[2];
if (pt[2]>zmax2) zmax2=pt[2];
}
}
if (hs1) {
dx = 0.5*(xmax2-xmin2);
origin[0] = 0.5*(xmax2+xmin2);
dy = 0.5*(ymax2-ymin2);
origin[1] = 0.5*(ymax2+ymin2);
dz = 0.5*(zmax2-zmin2);
origin[2] = 0.5*(zmax2+zmin2);
return;
}
if (hs2) {
dx = 0.5*(xmax1-xmin1);
origin[0] = 0.5*(xmax1+xmin1);
dy = 0.5*(ymax1-ymin1);
origin[1] = 0.5*(ymax1+ymin1);
dz = 0.5*(zmax1-zmin1);
origin[2] = 0.5*(zmax1+zmin1);
return;
}
Double_t sort[4];
Int_t isort[4];
sort[0] = xmin1;
sort[1] = xmax1;
sort[2] = xmin2;
sort[3] = xmax2;
TMath::Sort(4, &sort[0], &isort[0], kFALSE);
if (isort[1]%2) {
Warning("ComputeBBox", "shapes %s and %s do not intersect", fLeft->GetName(), fRight->GetName());
dx = dy = dz = 0;
memset(origin, 0, 3*sizeof(Double_t));
return;
}
dx = 0.5*(sort[isort[2]]-sort[isort[1]]);
origin[0] = 0.5*(sort[isort[1]]+sort[isort[2]]);
sort[0] = ymin1;
sort[1] = ymax1;
sort[2] = ymin2;
sort[3] = ymax2;
TMath::Sort(4, &sort[0], &isort[0], kFALSE);
if (isort[1]%2) {
Warning("ComputeBBox", "shapes %s and %s do not intersect", fLeft->GetName(), fRight->GetName());
dx = dy = dz = 0;
memset(origin, 0, 3*sizeof(Double_t));
return;
}
dy = 0.5*(sort[isort[2]]-sort[isort[1]]);
origin[1] = 0.5*(sort[isort[1]]+sort[isort[2]]);
sort[0] = zmin1;
sort[1] = zmax1;
sort[2] = zmin2;
sort[3] = zmax2;
TMath::Sort(4, &sort[0], &isort[0], kFALSE);
if (isort[1]%2) {
Warning("ComputeBBox", "shapes %s and %s do not intersect", fLeft->GetName(), fRight->GetName());
dx = dy = dz = 0;
memset(origin, 0, 3*sizeof(Double_t));
return;
}
dz = 0.5*(sort[isort[2]]-sort[isort[1]]);
origin[2] = 0.5*(sort[isort[1]]+sort[isort[2]]);
}
//_____________________________________________________________________________
void TGeoIntersection::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
Double_t local[3], ldir[3], lnorm[3];
norm[0] = norm[1] = 0.;
norm[2] = 1.;
if (fSelected == 1) {
fLeftMat->MasterToLocal(point, local);
fLeftMat->MasterToLocalVect(dir, ldir);
fLeft->ComputeNormal(local,ldir,lnorm);
fLeftMat->LocalToMasterVect(lnorm, norm);
return;
}
if (fSelected == 2) {
fRightMat->MasterToLocal(point, local);
fRightMat->MasterToLocalVect(dir, ldir);
fRight->ComputeNormal(local,ldir,lnorm);
fRightMat->LocalToMasterVect(lnorm, norm);
return;
}
fLeftMat->MasterToLocal(point,local);
if (!fLeft->Contains(local)) {
fLeftMat->MasterToLocalVect(dir,ldir);
fLeft->ComputeNormal(local,ldir,lnorm);
fLeftMat->LocalToMasterVect(lnorm,norm);
return;
}
fRightMat->MasterToLocal(point,local);
if (!fRight->Contains(local)) {
fRightMat->MasterToLocalVect(dir,ldir);
fRight->ComputeNormal(local,ldir,lnorm);
fRightMat->LocalToMasterVect(lnorm,norm);
return;
}
// point is inside intersection.
local[0] = point[0] + 1E-5*dir[0];
local[1] = point[1] + 1E-5*dir[1];
local[2] = point[2] + 1E-5*dir[2];
if (Contains(local)) {
local[0] = point[0] - 1E-5*dir[0];
local[1] = point[1] - 1E-5*dir[1];
local[2] = point[2] - 1E-5*dir[2];
if (Contains(local)) return;
}
ComputeNormal(local,dir,norm);
}
//-----------------------------------------------------------------------------
Bool_t TGeoIntersection::Contains(Double_t *point) const
{
// Find if a intersection of two shapes contains a given point
Double_t local[3];
fLeftMat->MasterToLocal(point, &local[0]);
Bool_t inside = fLeft->Contains(&local[0]);
if (!inside) return kFALSE;
fRightMat->MasterToLocal(point, &local[0]);
inside = fRight->Contains(&local[0]);
return inside;
}
//-----------------------------------------------------------------------------
Int_t TGeoIntersection::DistanceToPrimitive(Int_t /*px*/, Int_t /*py*/)
{
// Compute minimum distance to shape vertices
return 9999;
}
//-----------------------------------------------------------------------------
Double_t TGeoIntersection::DistFromInside(Double_t *point, Double_t *dir, Int_t iact,
Double_t step, Double_t *safe) const
{
// Compute distance from a given point to outside.
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point,kTRUE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
TGeoBoolNode *node = (TGeoBoolNode*)this;
Double_t local[3], ldir[3], rdir[3];
Double_t d1, d2, snxt=0.;
fLeftMat->MasterToLocal(point, &local[0]);
fLeftMat->MasterToLocalVect(dir, &ldir[0]);
fRightMat->MasterToLocalVect(dir, &rdir[0]);
d1 = fLeft->DistFromInside(&local[0], &ldir[0], iact, step, safe);
fRightMat->MasterToLocal(point, &local[0]);
d2 = fRight->DistFromInside(&local[0], &rdir[0], iact, step, safe);
if (d1<d2) {
snxt = d1;
node->SetSelected(1);
} else {
snxt = d2;
node->SetSelected(2);
}
return snxt;
}
//-----------------------------------------------------------------------------
Double_t TGeoIntersection::DistFromOutside(Double_t *point, Double_t *dir, Int_t iact,
Double_t step, Double_t *safe) const
{
// Compute distance from a given point to inside.
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point,kFALSE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
TGeoBoolNode *node = (TGeoBoolNode*)this;
Double_t lpt[3], rpt[3], master[3], ldir[3], rdir[3];
memcpy(master, point, 3*sizeof(Double_t));
Int_t i;
Double_t d1 = 0.;
Double_t d2 = 0.;
fLeftMat->MasterToLocal(point, lpt);
fRightMat->MasterToLocal(point, rpt);
fLeftMat->MasterToLocalVect(dir, ldir);
fRightMat->MasterToLocalVect(dir, rdir);
Bool_t inleft = fLeft->Contains(lpt);
Bool_t inright = fRight->Contains(rpt);
node->SetSelected(0);
Double_t snext = 0.0;
if (inleft && inright) return snext;
while (1) {
d1 = d2 = 0.0;
if (!inleft) {
d1 = fLeft->DistFromOutside(lpt,ldir,3);
if (d1>1E20) return TGeoShape::Big();
}
if (!inright) {
d2 = fRight->DistFromOutside(rpt,rdir,3);
if (d2>1E20) return TGeoShape::Big();
}
if (d1>d2) {
// propagate to left shape
snext += d1;
node->SetSelected(1);
inleft = kTRUE;
for (i=0; i<3; i++) master[i] += d1*dir[i];
fRightMat->MasterToLocal(master,rpt);
// check if propagated point is inside right shape
inright = fRight->Contains(rpt);
if (inright) return snext;
// here inleft=true, inright=false
} else {
// propagate to right shape
snext += d2;
node->SetSelected(2);
inright = kTRUE;
for (i=0; i<3; i++) master[i] += d2*dir[i];
fLeftMat->MasterToLocal(master,lpt);
// check if propagated point is inside left shape
inleft = fLeft->Contains(lpt);
if (inleft) return snext;
// here inleft=false, inright=true
}
}
return snext;
}
//-----------------------------------------------------------------------------
Int_t TGeoIntersection::GetNpoints() const
{
// Returns number of vertices for the composite shape described by this intersection.
return 0;
}
//-----------------------------------------------------------------------------
Double_t TGeoIntersection::Safety(Double_t *point, Bool_t) const
{
// Compute safety distance for a union node;
Double_t local1[3], local2[3];
fLeftMat->MasterToLocal(point,local1);
Bool_t in1 = fLeft->Contains(local1);
fRightMat->MasterToLocal(point,local2);
Bool_t in2 = fRight->Contains(local2);
Double_t saf1 = fLeft->Safety(local1, in1);
Double_t saf2 = fRight->Safety(local2, in2);
if (in1 && in2) return TMath::Min(saf1, saf2);
if (in1) return saf2;
if (in2) return saf1;
return TMath::Max(saf1,saf2);
}
//_____________________________________________________________________________
void TGeoIntersection::SavePrimitive(ofstream &out, Option_t *option)
{
// Save a primitive as a C++ statement(s) on output stream "out".
TGeoBoolNode::SavePrimitive(out,option);
out << " pBoolNode = new TGeoIntersection(";
out << fLeft->GetPointerName() << ",";
out << fRight->GetPointerName() << ",";
if (!fLeftMat->IsIdentity()) out << fLeftMat->GetPointerName() << ",";
else out << "0,";
if (!fRightMat->IsIdentity()) out << fRightMat->GetPointerName() << ");" << endl;
else out << "0);" << endl;
}
//-----------------------------------------------------------------------------
void TGeoIntersection::SetPoints(Double_t * /*points*/) const
{
// Fill buffer with shape vertices.
}
//-----------------------------------------------------------------------------
void TGeoIntersection::SetPoints(Float_t * /*points*/) const
{
// Fill buffer with shape vertices.
}
//-----------------------------------------------------------------------------
void TGeoIntersection::Sizeof3D() const
{
// Register 3D size of this shape.
TGeoBoolNode::Sizeof3D();
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.