// @(#)root/mathcore:$Name:  $:$Id: Quaternion.h,v 1.2 2005/09/19 16:43:07 brun Exp $
// Authors: W. Brown, M. Fischler, L. Moneta    2005  

 /**********************************************************************
  *                                                                    *
  * Copyright (c) 2005 , LCG ROOT FNAL MathLib Team                    *
  *                                                                    *
  *                                                                    *
  **********************************************************************/

// Header file for rotation in 3 dimensions, represented by a quaternion
// Created by: Mark Fischler Thurs June 9  2005
//
// Last update: $Id: Quaternion.h,v 1.2 2005/09/19 16:43:07 brun Exp $
//
#ifndef ROOT_Math_GenVector_Quaternion 
#define ROOT_Math_GenVector_Quaternion  1


#include "Math/GenVector/Cartesian3D.h"
#include "Math/GenVector/DisplacementVector3D.h"
#include "Math/GenVector/PositionVector3D.h"
#include "Math/GenVector/LorentzVector.h"
#include "Math/GenVector/3DConversions.h"
#include "Math/GenVector/3DDistances.h"

#include <algorithm>
#include <cassert>


namespace ROOT {
namespace Math {


  /**
     Rotation class with the (3D) rotation represented by
     a unit quaternion (u, i, j, k).
     This is the optimal representation for multiplication of multiple
     rotations, and for computation of group-manifold-invariant distance
     between two rotations.
     See also AxisAngle, EulerAngles, and Rotation3D.

     @ingroup GenVector
  */
class Quaternion {

public:

  typedef double Scalar;

  // ========== Constructors and Assignment =====================

  /**
      Default constructor (identity rotation)
  */
  Quaternion()
  : fU(1.0)
  , fI(0.0)
  , fJ(0.0)
  , fK(0.0)
  { }

  /**
     Construct given a pair of pointers or iterators defining the
     beginning and end of an array of four Scalars
   */
  template<class IT>
  Quaternion(IT begin, IT end) { SetComponents(begin,end); }

  // ======== Construction From other Rotation Forms ==================

  /**
     Construct from a Rotation3D
  */
  explicit Quaternion( Rotation3D const  & r ) { gv_detail::convert(r, *this); }

  /**
     Construct from an AxisAngle
  */
  explicit Quaternion( AxisAngle const   & a ) { gv_detail::convert(a, *this); }

  /**
     Construct from EulerAngles
  */
  explicit Quaternion( EulerAngles const & e ) { gv_detail::convert(e, *this); }

  /**
     Construct from an axial rotation
  */
  explicit Quaternion( RotationZ const & r ) { gv_detail::convert(r, *this); }
  explicit Quaternion( RotationY const & r ) { gv_detail::convert(r, *this); }
  explicit Quaternion( RotationX const & r ) { gv_detail::convert(r, *this); }

  /**
     Construct from four Scalars representing the coefficients of u, i, j, k
   */
  Quaternion(Scalar u, Scalar i, Scalar j, Scalar k) :
                        fU(u), fI(i), fJ(j), fK(k) { }

  // The compiler-generated copy ctor, copy assignment, and dtor are OK.

  /**
     Re-adjust components to eliminate small deviations from |Q| = 1
     orthonormality.
   */
  void Rectify();

  /**
     Assign from a Rotation3D
  */
  Quaternion &
  operator=( Rotation3D const  & r ) { return operator=(Quaternion(r)); }

  /**
     Assign from an AxisAngle
  */
  Quaternion &
  operator=( AxisAngle const &   a ) { return operator=(Quaternion(a)); }

  /**
     Assign from EulerAngles
  */
  Quaternion &
  operator=( EulerAngles const & e ) {return operator=(Quaternion(e)); }

  /**
     Assign from an axial rotation
  */
  Quaternion &
  operator=( RotationZ const & r ) { return operator=(Quaternion(r)); }
  Quaternion &
  operator=( RotationY const & r ) { return operator=(Quaternion(r)); }
  Quaternion &
  operator=( RotationX const & r ) { return operator=(Quaternion(r)); }

  // ======== Components ==============

  /**
     Set the four components given an iterator to the start of
     the desired data, and another to the end (4 past start).
   */
  template<class IT>
  void SetComponents(IT begin, IT end) {
    assert (end==begin+4);
    fU = *begin++;
    fI = *begin++;
    fJ = *begin++;
    fK = *begin;
  }

  /**
     Get the components into data specified by an iterator begin
     and another to the end of the desired data (4 past start).
   */
  template<class IT>
  void GetComponents(IT begin, IT end) const {
    assert (end==begin+4);
    *begin++ = fU;
    *begin++ = fI;
    *begin++ = fJ;
    *begin   = fK;
  }

  /**
     Set the components based on four Scalars.  The sum of the squares of
     these Scalars should be 1; no checking is done.
   */
  void SetComponents(Scalar u, Scalar i, Scalar j, Scalar k) {
    fU=u; fI=i; fJ=j; fK=k;
  }

  /**
     Get the components into four Scalars.
    */
  void GetComponents(Scalar & u, Scalar & i, Scalar & j, Scalar & k) const {
    u=fU; i=fI; j=fJ; k=fK;
  }

  /**
     Access to the four quaternion components:
     U() is the coefficient of the identity Pauli matrix,
     I(), J() and K() are the coefficients of sigma_x, sigma_y, sigma_z
   */
  Scalar U() const { return fU; }
  Scalar I() const { return fI; }
  Scalar J() const { return fJ; }
  Scalar K() const { return fK; }

  // =========== operations ==============

  /**
     Rotation operation on a cartesian vector
   */
  DisplacementVector3D< ROOT::Math::Cartesian3D<double> >
  operator() (const DisplacementVector3D< ROOT::Math::Cartesian3D<double> > & v) const;

  /**
     Rotation operation on a displacement vector in any coordinate system
   */
  template <class CoordSystem>
  DisplacementVector3D<CoordSystem>
  operator() (const DisplacementVector3D<CoordSystem> & v) const {
    DisplacementVector3D< Cartesian3D<double> > xyz(v);
    DisplacementVector3D< Cartesian3D<double> > Rxyz = operator()(xyz);
    return DisplacementVector3D<CoordSystem> ( Rxyz );
  }

  /**
     Rotation operation on a position vector in any coordinate system
   */
  template <class CoordSystem>
  PositionVector3D<CoordSystem>
  operator() (const PositionVector3D<CoordSystem> & v) const {
    DisplacementVector3D< Cartesian3D<double> > xyz(v);
    DisplacementVector3D< Cartesian3D<double> > Rxyz = operator()(xyz);
    return PositionVector3D<CoordSystem> ( Rxyz );
  }

  /**
     Rotation operation on a Lorentz vector in any 4D coordinate system
   */
  template <class CoordSystem>
  LorentzVector<CoordSystem>
  operator() (const LorentzVector<CoordSystem> & v) const {
    DisplacementVector3D< Cartesian3D<double> > xyz(v.Vec());
    xyz = operator()(xyz);
    LorentzVector< PxPyPzE4D<double> > xyzt (xyz.X(), xyz.Y(), xyz.Z(), v.E());
    return LorentzVector<CoordSystem> ( xyzt );
  }

  /**
     Rotation operation on an arbitrary vector v.
     Preconditions:  v must implement methods x(), y(), and z()
     and the arbitrary vector type must have a constructor taking (x,y,z)
   */
  template <class ForeignVector>
  ForeignVector
  operator() (const  ForeignVector & v) const {
    DisplacementVector3D< Cartesian3D<double> > xyz(v);
    DisplacementVector3D< Cartesian3D<double> > Rxyz = operator()(xyz);
    return ForeignVector ( Rxyz.X(), Rxyz.Y(), Rxyz.Z() );
  }

  /**
     Overload operator * for rotation on a vector
   */
  template <class AVector>
  inline
  AVector operator* (const AVector & v) const
  {
    return operator()(v);
  }

  /**
      Invert a rotation in place
   */
  void Invert() { fI = -fI; fJ = -fJ; fK = -fK; }

  /**
      Return inverse of a rotation
   */
  Quaternion Inverse() const { return Quaternion(fU, -fI, -fJ, -fK); }

  // ========= Multi-Rotation Operations ===============

  /**
     Multiply (combine) two rotations
   */
  /**
     Multiply (combine) two rotations
   */
  Quaternion operator * (const Quaternion  & q) const;
  Quaternion operator * (const Rotation3D  & r) const;
  Quaternion operator * (const AxisAngle   & a) const;
  Quaternion operator * (const EulerAngles & e) const;
  Quaternion operator * (const RotationX  & rx) const;
  Quaternion operator * (const RotationY  & ry) const;
  Quaternion operator * (const RotationZ  & rz) const;

  /**
     Post-Multiply (on right) by another rotation :  T = T*R
   */
  template <class R>
  Quaternion & operator *= (const R & r) { return *this = (*this)*r; }


  /**
     Distance between two rotations in Quaternion form
     Note:  The rotation group is isomorphic to a 3-sphere
            with diametrically opposite points identified.
            The (rotation group-invariant) is the smaller
            of the two possible angles between the images of
            the two totations on that sphere.  Thus the distance
            is never greater than pi/2.
   */

  Scalar Distance(const Quaternion & q) const ;

  /**
     Equality/inequality operators
   */
  bool operator == (const Quaternion & rhs) {
    if( fU != rhs.fU )  return false;
    if( fI != rhs.fI )  return false;
    if( fJ != rhs.fJ )  return false;
    if( fK != rhs.fK )  return false;
    return true;
  }
  bool operator != (const Quaternion & rhs) {
    return ! operator==(rhs);
  }

private:

  Scalar fU;
  Scalar fI;
  Scalar fJ;
  Scalar fK;

};  // Quaternion

// ============ Class Quaternion ends here ============

/**
   Distance between two rotations
 */
template <class R>
inline
typename Quaternion::Scalar
Distance ( const Quaternion& r1, const R & r2) {return gv_detail::dist(r1,r2);}

/**
   Multiplication of an axial rotation by an AxisAngle
 */
Quaternion operator* (RotationX const & r1, Quaternion const & r2);
Quaternion operator* (RotationY const & r1, Quaternion const & r2);
Quaternion operator* (RotationZ const & r1, Quaternion const & r2);

/**
   Stream Output and Input
 */
  // TODO - I/O should be put in the manipulator form 

std::ostream & operator<< (std::ostream & os, const Quaternion & q);


}  // namespace Math
}  // namespace ROOT

#endif // ROOT_Math_GenVector_Quaternion 


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.