// @(#)root/mathcore:$Name: $:$Id: EulerAngles.h,v 1.3 2005/09/19 16:43:07 brun Exp $
// Authors: W. Brown, M. Fischler, L. Moneta 2005
/**********************************************************************
* *
* Copyright (c) 2005 , LCG ROOT MathLib Team *
* *
* *
**********************************************************************/
// Header file for class EulerAngles
//
// Created by: Lorenzo Moneta at Tue May 10 17:55:10 2005
//
// Last update: Tue May 10 17:55:10 2005
//
#ifndef ROOT_Math_GenVector_EulerAngles
#define ROOT_Math_GenVector_EulerAngles 1
#include "Math/GenVector/Rotation3D.h"
#include "Math/GenVector/DisplacementVector3D.h"
#include "Math/GenVector/PositionVector3D.h"
#include "Math/GenVector/LorentzVector.h"
#include "Math/GenVector/3DConversions.h"
#include <algorithm>
#include <cassert>
namespace ROOT {
namespace Math {
/**
EulerAngles class describing rotation as three angles (Euler Angles).
The Euler angles definition matches that of Classical Mechanics (Goldstein).
See also
<A HREF="http://mathworld.wolfram.com/EulerAngles.html">mathworld</A>
Euler angles definition.
@ingroup GenVector
*/
class EulerAngles {
public:
typedef double Scalar;
/**
Default constructor
*/
EulerAngles() : fPhi(0.0), fTheta(0.0), fPsi(0.0) { }
/**
Constructor from phi, theta and psi
*/
EulerAngles( Scalar phi, Scalar theta, Scalar psi ) :
fPhi(phi), fTheta(theta), fPsi(psi)
{}
/**
Construct given a pair of pointers or iterators defining the
beginning and end of an array of three Scalars, to be treated as
the angles phi, theta and psi.
*/
template<class IT>
EulerAngles(IT begin, IT end) { SetComponents(begin,end); }
// The compiler-generated copy ctor, copy assignment, and dtor are OK.
/**
Re-adjust components place angles in canonical ranges
*/
void Rectify();
// ======== Construction From other Rotation Forms ==================
/**
Construct from a rotation matrix
*/
explicit EulerAngles(const Rotation3D & r) {gv_detail::convert(r,*this);}
/**
Construct from a rotation represented by a Quaternion
*/
explicit EulerAngles(const Quaternion & q) {gv_detail::convert(q,*this);}
/**
Construct from an AxisAngle
*/
explicit EulerAngles(const AxisAngle & a ) { gv_detail::convert(a, *this); }
/**
Construct from an axial rotation
*/
explicit EulerAngles( RotationZ const & r ) { gv_detail::convert(r, *this); }
explicit EulerAngles( RotationY const & r ) { gv_detail::convert(r, *this); }
explicit EulerAngles( RotationX const & r ) { gv_detail::convert(r, *this); }
/**
Assign from a Rotation3D
*/
EulerAngles &
operator=( Rotation3D const & r ) { return operator=(EulerAngles(r)); }
/**
Assign from an AxisAngle
*/
EulerAngles &
operator=( AxisAngle const & a ) { return operator=(EulerAngles(a)); }
/**
Assign from a Quaternion
*/
EulerAngles &
operator=( Quaternion const & q ) {return operator=(EulerAngles(q)); }
/**
Assign from an axial rotation
*/
EulerAngles &
operator=( RotationZ const & r ) { return operator=(EulerAngles(r)); }
EulerAngles &
operator=( RotationY const & r ) { return operator=(EulerAngles(r)); }
EulerAngles &
operator=( RotationX const & r ) { return operator=(EulerAngles(r)); }
// ======== Components ==============
/**
Set the three Euler angles given a pair of pointers or iterators
defining the beginning and end of an array of three Scalars.
*/
template<class IT>
void SetComponents(IT begin, IT end) {
assert (end==begin+3);
fPhi = *begin++;
fTheta = *begin++;
fPsi = *begin;
}
/**
Get the axis and then the angle into data specified by an iterator begin
and another to the end of the desired data (4 past start).
*/
template<class IT>
void GetComponents(IT begin, IT end) const {
assert (end==begin+4);
*begin++ = fPhi;
*begin++ = fTheta;
*begin = fPsi;
}
/**
Set the components phi, theta, psi based on three Scalars.
*/
void SetComponents(Scalar phi, Scalar theta, Scalar psi) {
fPhi=phi; fTheta=theta; fPsi=psi;
}
/**
Get the components phi, theta, psi into three Scalars.
*/
void GetComponents(Scalar & phi, Scalar & theta, Scalar & psi) const {
phi=fPhi; theta=fTheta; psi=fPsi;
}
/**
Return Phi Euler angle
*/
Scalar Phi() const { return fPhi; }
/**
Return Theta Euler angle
*/
Scalar Theta() const { return fTheta; }
/**
Return Psi Euler angle
*/
Scalar Psi() const { return fPsi; }
// =========== operations ==============
/**
Rotation operation on a cartesian vector
*/
DisplacementVector3D< ROOT::Math::Cartesian3D<double> >
operator() (const DisplacementVector3D< ROOT::Math::Cartesian3D<double> > & v) const;
/**
Rotation operation on a displacement vector in any coordinate system
*/
template <class CoordSystem>
DisplacementVector3D<CoordSystem>
operator() (const DisplacementVector3D<CoordSystem> & v) const {
DisplacementVector3D< Cartesian3D<double> > xyz(v);
DisplacementVector3D< Cartesian3D<double> > Rxyz = operator()(xyz);
return DisplacementVector3D<CoordSystem> ( Rxyz );
}
/**
Rotation operation on a position vector in any coordinate system
*/
template <class CoordSystem>
PositionVector3D<CoordSystem>
operator() (const PositionVector3D<CoordSystem> & v) const {
DisplacementVector3D< Cartesian3D<double> > xyz(v);
DisplacementVector3D< Cartesian3D<double> > Rxyz = operator()(xyz);
return PositionVector3D<CoordSystem> ( Rxyz );
}
/**
Rotation operation on a Lorentz vector in any 4D coordinate system
*/
template <class CoordSystem>
LorentzVector<CoordSystem>
operator() (const LorentzVector<CoordSystem> & v) const {
DisplacementVector3D< Cartesian3D<double> > xyz(v.Vec());
xyz = operator()(xyz);
LorentzVector< PxPyPzE4D<double> > xyzt (xyz.X(), xyz.Y(), xyz.Z(), v.E());
return LorentzVector<CoordSystem> ( xyzt );
}
/**
Rotation operation on an arbitrary vector v.
Preconditions: v must implement methods x(), y(), and z()
and the arbitrary vector type must have a constructor taking (x,y,z)
*/
template <class ForeignVector>
ForeignVector
operator() (const ForeignVector & v) const {
DisplacementVector3D< Cartesian3D<double> > xyz(v);
DisplacementVector3D< Cartesian3D<double> > Rxyz = operator()(xyz);
return ForeignVector ( Rxyz.X(), Rxyz.Y(), Rxyz.Z() );
}
/**
Overload operator * for rotation on a vector
*/
template <class AVector>
inline
AVector operator* (const AVector & v) const
{
return operator()(v);
}
/**
Invert a rotation in place
*/
void Invert() {Scalar tmp = -fPhi; fPhi = -fPsi; fTheta = -fTheta; fPsi=tmp;}
/**
Return inverse of a rotation
*/
EulerAngles Inverse() const { return EulerAngles(-fPsi, -fTheta, -fPhi); }
// ========= Multi-Rotation Operations ===============
/**
Multiply (combine) two rotations
*/
EulerAngles operator * (const Rotation3D & r) const;
EulerAngles operator * (const AxisAngle & a) const;
EulerAngles operator * (const EulerAngles & e) const;
EulerAngles operator * (const Quaternion & q) const;
EulerAngles operator * (const RotationX & rx) const;
EulerAngles operator * (const RotationY & ry) const;
EulerAngles operator * (const RotationZ & rz) const;
/**
Post-Multiply (on right) by another rotation : T = T*R
*/
template <class R>
EulerAngles & operator *= (const R & r) { return *this = (*this)*r; }
/**
Distance between two rotations
*/
template <class R>
Scalar Distance ( const R & r ) {return gv_detail::dist(*this,r);}
/**
Equality/inequality operators
*/
bool operator == (const EulerAngles & rhs) {
if( fPhi != rhs.fPhi ) return false;
if( fTheta != rhs.fTheta ) return false;
if( fPsi != rhs.fPsi ) return false;
return true;
}
bool operator != (const EulerAngles & rhs) {
return ! operator==(rhs);
}
private:
double fPhi;
double fTheta;
double fPsi;
static double Pi() { return 3.14159265358979323; }
}; // EulerAngles
/**
Distance between two rotations
*/
template <class R>
inline
typename EulerAngles::Scalar
Distance ( const EulerAngles& r1, const R & r2) {return gv_detail::dist(r1,r2);}
/**
Multiplication of an axial rotation by an AxisAngle
*/
EulerAngles operator* (RotationX const & r1, EulerAngles const & r2);
EulerAngles operator* (RotationY const & r1, EulerAngles const & r2);
EulerAngles operator* (RotationZ const & r1, EulerAngles const & r2);
/**
Stream Output and Input
*/
// TODO - I/O should be put in the manipulator form
std::ostream & operator<< (std::ostream & os, const EulerAngles & e);
} // namespace Math
} // namespace ROOT
#endif /* ROOT_Math_GenVector_EulerAngles */
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.