library: libMatrix
#include "TMatrixDSym.h"

TMatrixDSym


class description - source file - inheritance tree (.pdf)

class TMatrixDSym : public TMatrixDBase

Inheritance Chart:
TObject
<-
TMatrixDBase
<-
TMatrixDSym

    protected:
virtual void Allocate(Int_t nrows, Int_t ncols, Int_t row_lwb = 0, Int_t col_lwb = 0, Int_t init = 0, Int_t nr_nonzeros = -1) void AMultA(const TMatrixDSym& a, Int_t constr = 1) void AtMultA(const TMatrixD& a, Int_t constr = 1) void AtMultA(const TMatrixDSym& a, Int_t constr = 1) void Delete_m(Int_t size, Double_t*&) Int_t Memcpy_m(Double_t* newp, const Double_t* oldp, Int_t copySize, Int_t newSize, Int_t oldSize) Double_t* New_m(Int_t size) public:
TMatrixDSym() TMatrixDSym(Int_t nrows) TMatrixDSym(Int_t row_lwb, Int_t row_upb) TMatrixDSym(Int_t nrows, const Double_t* data, Option_t* option = "") TMatrixDSym(Int_t row_lwb, Int_t row_upb, const Double_t* data, Option_t* option = "") TMatrixDSym(const TMatrixDSym& another) TMatrixDSym(const TMatrixFSym& another) TMatrixDSym(TMatrixDBase::EMatrixCreatorsOp1 op, const TMatrixDSym& prototype) TMatrixDSym(TMatrixDBase::EMatrixCreatorsOp1 op, const TMatrixD& prototype) TMatrixDSym(const TMatrixDSym& a, TMatrixDBase::EMatrixCreatorsOp2 op, const TMatrixDSym& b) TMatrixDSym(const TMatrixDSymLazy& lazy_constructor) TMatrixDSym GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Option_t* option = "S") const virtual ~TMatrixDSym() virtual TMatrixDBase& Apply(const TElementActionD& action) virtual TMatrixDBase& Apply(const TElementPosActionD& action) static TClass* Class() virtual void Clear(Option_t* = "") virtual Double_t Determinant() const virtual void Determinant(Double_t& d1, Double_t& d2) const const TMatrixD EigenVectors(TVectorD& eigenValues) const virtual const Int_t* GetColIndexArray() const virtual Int_t* GetColIndexArray() virtual const Double_t* GetMatrixArray() const virtual Double_t* GetMatrixArray() virtual const Int_t* GetRowIndexArray() const virtual Int_t* GetRowIndexArray() TMatrixDSym& GetSub(Int_t row_lwb, Int_t row_upb, TMatrixDSym& target, Option_t* option = "S") const virtual TMatrixDBase& GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, TMatrixDBase& target, Option_t* option = "S") const TMatrixDSym& Invert(Double_t* det = 0) TMatrixDSym& InvertFast(Double_t* det = 0) virtual TClass* IsA() const virtual Bool_t IsSymmetric() const virtual Double_t operator()(Int_t rown, Int_t coln) const virtual Double_t& operator()(Int_t rown, Int_t coln) TMatrixDSym& operator*=(Double_t val) TMatrixDSym& operator+=(Double_t val) TMatrixDSym& operator+=(const TMatrixDSym& source) TMatrixDSym& operator-=(Double_t val) TMatrixDSym& operator-=(const TMatrixDSym& source) TMatrixDSym& operator=(const TMatrixDSym& source) TMatrixDSym& operator=(const TMatrixFSym& source) TMatrixDSym& operator=(const TMatrixDSymLazy& source) TMatrixDSym& operator=(Double_t val) const TMatrixDRow_const operator[](Int_t rown) const TMatrixDRow operator[](Int_t rown) virtual TMatrixDBase& Randomize(Double_t alpha, Double_t beta, Double_t& seed) virtual TMatrixDSym& RandomizePD(Double_t alpha, Double_t beta, Double_t& seed) TMatrixDSym& Rank1Update(const TVectorD& v, Double_t alpha = 1.0) virtual TMatrixDBase& ResizeTo(Int_t nrows, Int_t ncols, Int_t nr_nonzeros = -1) virtual TMatrixDBase& ResizeTo(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Int_t nr_nonzeros = -1) TMatrixDBase& ResizeTo(const TMatrixDSym& m) virtual TMatrixDBase& SetColIndexArray(Int_t*) virtual TMatrixDBase& SetMatrixArray(const Double_t* data, Option_t* option = "") virtual TMatrixDBase& SetRowIndexArray(Int_t*) TMatrixDSym& SetSub(Int_t row_lwb, const TMatrixDBase& source) virtual TMatrixDBase& SetSub(Int_t row_lwb, Int_t col_lwb, const TMatrixDBase& source) virtual TMatrixDBase& Shift(Int_t row_shift, Int_t col_shift) virtual void ShowMembers(TMemberInspector& insp, char* parent) TMatrixDSym& Similarity(const TMatrixD& n) TMatrixDSym& Similarity(const TMatrixDSym& n) TMatrixDSym& SimilarityT(const TMatrixD& n) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b) TMatrixDSym& T() TMatrixDSym& Transpose(const TMatrixDSym& source) TMatrixDSym& Use(Int_t nrows, Double_t* data) TMatrixDSym& Use(Int_t row_lwb, Int_t row_upb, Double_t* data) TMatrixDSym& Use(TMatrixDSym& a)

Data Members


    protected:
Double_t fDataStack[25] ! data container Double_t* fElements [fNelems] elements themselves

Class Description

                                                                      
 TMatrixDSym                                                          
                                                                      
 Implementation of a symmetric matrix in the linear algebra package   
                                                                      
 Note that in this implementation both matrix element m[i][j] and     
 m[j][i] are updated and stored in memory . However, when making the  
 object persistent only the upper right triangle is stored .          
                                                                      


TMatrixDSym(Int_t no_rows)

TMatrixDSym(Int_t row_lwb,Int_t row_upb)

TMatrixDSym(Int_t no_rows,const Double_t *elements,Option_t *option)
 option="F": array elements contains the matrix stored column-wise
             like in Fortran, so a[i,j] = elements[i+no_rows*j],
 else        it is supposed that array elements are stored row-wise
             a[i,j] = elements[i*no_cols+j]

 array elements are copied

TMatrixDSym(Int_t row_lwb,Int_t row_upb,const Double_t *elements,Option_t *option)
 array elements are copied

TMatrixDSym(const TMatrixDSym &another) : TMatrixDBase()

TMatrixDSym(const TMatrixFSym &another) : TMatrixDBase()

TMatrixDSym(EMatrixCreatorsOp1 op,const TMatrixDSym &prototype)
 Create a matrix applying a specific operation to the prototype.
 Example: TMatrixDSym a(10,12); ...; TMatrixDSym b(TMatrixDBase::kTransposed, a);
 Supported operations are: kZero, kUnit, kTransposed, kInverted and kAtA.

TMatrixDSym(EMatrixCreatorsOp1 op,const TMatrixD &prototype)

TMatrixDSym(const TMatrixDSym &a,EMatrixCreatorsOp2 op,const TMatrixDSym &b)

TMatrixDSym(const TMatrixDSymLazy &lazy_constructor)

void Delete_m(Int_t size,Double_t *&m)
 delete data pointer m, if it was assigned on the heap

Double_t* New_m(Int_t size)
 return data pointer . if requested size <= kSizeMax, assign pointer
 to the stack space

Int_t Memcpy_m(Double_t *newp,const Double_t *oldp,Int_t copySize, Int_t newSize,Int_t oldSize)
 copy copySize doubles from *oldp to *newp . However take care of the
 situation where both pointers are assigned to the same stack space

void Allocate(Int_t no_rows,Int_t no_cols,Int_t row_lwb,Int_t col_lwb, Int_t init,Int_t /*nr_nonzeros*/)
 Allocate new matrix. Arguments are number of rows, columns, row
 lowerbound (0 default) and column lowerbound (0 default).

void AtMultA(const TMatrixD &a,Int_t constr)
 Create a matrix C such that C = A' * A. In other words,
 c[i,j] = SUM{ a[k,i] * a[k,j] }. Note, matrix C is allocated for constr=1.

void AtMultA(const TMatrixDSym &a,Int_t constr)
 Matrix multiplication, with A symmetric
 Create a matrix C such that C = A' * A = A * A = A * A'
 Note, matrix C is allocated for constr=1.

TMatrixDSym& Use(Int_t row_lwb,Int_t row_upb,Double_t *data)

TMatrixDSym& GetSub(Int_t row_lwb,Int_t row_upb,TMatrixDSym &target,Option_t *option) const
 Get submatrix [row_lwb..row_upb][row_lwb..row_upb]; The indexing range of the
 returned matrix depends on the argument option:

 option == "S" : return [0..row_upb-row_lwb+1][0..row_upb-row_lwb+1] (default)
 else          : return [row_lwb..row_upb][row_lwb..row_upb]

TMatrixDBase& GetSub(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb, TMatrixDBase &target,Option_t *option) const
 Get submatrix [row_lwb..row_upb][col_lwb..col_upb]; The indexing range of the
 returned matrix depends on the argument option:

 option == "S" : return [0..row_upb-row_lwb+1][0..col_upb-col_lwb+1] (default)
 else          : return [row_lwb..row_upb][col_lwb..col_upb]

TMatrixDSym& SetSub(Int_t row_lwb,const TMatrixDBase &source)
 Insert matrix source starting at [row_lwb][row_lwb], thereby overwriting the part
 [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source];

TMatrixDBase& SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixDBase &source)
 Insert matrix source starting at [row_lwb][col_lwb] in a symmetric fashion, thereby overwriting the part
 [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source];

TMatrixDBase& SetMatrixArray(const Double_t *data,Option_t *option)

TMatrixDBase& Shift(Int_t row_shift,Int_t col_shift)

TMatrixDBase& ResizeTo(Int_t nrows,Int_t ncols,Int_t /*nr_nonzeros*/)
 Set size of the matrix to nrows x ncols
 New dynamic elements are created, the overlapping part of the old ones are
 copied to the new structures, then the old elements are deleted.

TMatrixDBase& ResizeTo(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb, Int_t /*nr_nonzeros*/)
 Set size of the matrix to [row_lwb:row_upb] x [col_lwb:col_upb]
 New dynamic elemenst are created, the overlapping part of the old ones are
 copied to the new structures, then the old elements are deleted.

Double_t Determinant() const

void Determinant(Double_t &d1,Double_t &d2) const

TMatrixDSym& Invert(Double_t *det)
 Invert the matrix and calculate its determinant
 Notice that we need to invoke an additional LU decomposition in order to
 calculate the determinant beacuse the Bunch-Kaufman does not result in a
 convenient triagularr matrix .

TMatrixDSym& InvertFast(Double_t *det)
 Invert the matrix and calculate its determinant

TMatrixDSym& Transpose(const TMatrixDSym &source)
 Transpose a matrix.

TMatrixDSym& Rank1Update(const TVectorD &v,Double_t alpha)
 Perform a rank 1 operation on the matrix:
     A += alpha * v * v^T

TMatrixDSym& Similarity(const TMatrixD &b)
 Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb)
 This is a similarity transform when B is orthogonal . It is more
 efficient than applying the actual multiplication because this
 routine realizes that  the final matrix is symmetric .

TMatrixDSym& Similarity(const TMatrixDSym &b)
 Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb)
 This is a similarity transform when B is orthogonal . It is more
 efficient than applying the actual multiplication because this
 routine realizes that  the final matrix is symmetric .

TMatrixDSym& SimilarityT(const TMatrixD &b)
 Calculate B^T * (*this) * B , final matrix will be (ncolsb x ncolsb)
 It is more efficient than applying the actual multiplication because this
 routine realizes that  the final matrix is symmetric .

TMatrixDBase& Apply(const TElementActionD &action)

TMatrixDBase& Apply(const TElementPosActionD &action)
 Apply action to each element of the matrix. To action the location
 of the current element is passed.

TMatrixDBase& Randomize(Double_t alpha,Double_t beta,Double_t &seed)
 randomize matrix element values but keep matrix symmetric

TMatrixDSym& RandomizePD(Double_t alpha,Double_t beta,Double_t &seed)
 randomize matrix element values but keep matrix symmetric positive definite

const TMatrixD EigenVectors(TVectorD &eigenValues) const
 Return a matrix containing the eigen-vectors ordered by descending eigen-values.
 For full functionality use TMatrixDSymEigen .

void Streamer(TBuffer &R__b)
 Stream an object of class TMatrixDSym.



Inline Functions


                           void ~TMatrixDSym()
                           void AMultA(const TMatrixDSym& a, Int_t constr = 1)
                    TMatrixDSym TMatrixDSym(const TMatrixDSymLazy& lazy_constructor)
                const Double_t* GetMatrixArray() const
                      Double_t* GetMatrixArray()
                   const Int_t* GetRowIndexArray() const
                         Int_t* GetRowIndexArray()
                   const Int_t* GetColIndexArray() const
                         Int_t* GetColIndexArray()
                  TMatrixDBase& SetRowIndexArray(Int_t*)
                  TMatrixDBase& SetColIndexArray(Int_t*)
                           void Clear(Option_t* = "")
                         Bool_t IsSymmetric() const
                   TMatrixDSym& Use(Int_t row_lwb, Int_t row_upb, Double_t* data)
                   TMatrixDSym& Use(TMatrixDSym& a)
                    TMatrixDSym GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Option_t* option = "S") const
                  TMatrixDBase& ResizeTo(const TMatrixDSym& m)
                   TMatrixDSym& T()
                       Double_t operator()(Int_t rown, Int_t coln) const
                      Double_t& operator()(Int_t rown, Int_t coln)
        const TMatrixDRow_const operator[](Int_t rown) const
                    TMatrixDRow operator[](Int_t rown)
                   TMatrixDSym& operator=(const TMatrixDSym& source)
                   TMatrixDSym& operator=(const TMatrixFSym& source)
                   TMatrixDSym& operator=(const TMatrixDSymLazy& source)
                   TMatrixDSym& operator=(Double_t val)
                   TMatrixDSym& operator-=(Double_t val)
                   TMatrixDSym& operator+=(Double_t val)
                   TMatrixDSym& operator*=(Double_t val)
                   TMatrixDSym& operator+=(const TMatrixDSym& source)
                   TMatrixDSym& operator-=(const TMatrixDSym& source)
                        TClass* Class()
                        TClass* IsA() const
                           void ShowMembers(TMemberInspector& insp, char* parent)
                           void StreamerNVirtual(TBuffer& b)


Last update: root/matrix:$Name: $:$Id: TMatrixDSym.cxx,v 1.23 2005/03/28 20:38:35 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.