// @(#)root/hist:$Name: $:$Id: TSpectrum.cxx,v 1.30 2005/09/05 10:02:38 brun Exp $ // Author: Miroslav Morhac 27/05/99 //__________________________________________________________________________ // THIS CLASS CONTAINS ADVANCED SPECTRA PROCESSING FUNCTIONS. // // // // ONE-DIMENSIONAL BACKGROUND ESTIMATION FUNCTIONS // // ONE-DIMENSIONAL SMOOTHING FUNCTIONS // // ONE-DIMENSIONAL DECONVOLUTION FUNCTIONS // // ONE-DIMENSIONAL PEAK SEARCH FUNCTIONS // // ONE-DIMENSIONAL PEAKS FITTING FUNCTIONS // // ONE-DIMENSIONAL ORTHOGONAL TRANSFORMS FUNCTIONS // // // // These functions were written by: // // Miroslav Morhac // // Institute of Physics // // Slovak Academy of Sciences // // Dubravska cesta 9, 842 28 BRATISLAVA // // SLOVAKIA // // // // email:fyzimiro@savba.sk, fax:+421 7 54772479 // // // // The original code in C has been repackaged as a C++ class by R.Brun // // // // The algorithms in this class have been published in the following // // references: // // [1] M.Morhac et al.: Background elimination methods for // // multidimensional coincidence gamma-ray spectra. Nuclear // // Instruments and Methods in Physics Research A 401 (1997) 113- // // 132. // // // // [2] M.Morhac et al.: Efficient one- and two-dimensional Gold // // deconvolution and its application to gamma-ray spectra // // decomposition. Nuclear Instruments and Methods in Physics // // Research A 401 (1997) 385-408. // // // // [3] M.Morhac et al.: Identification of peaks in multidimensional // // coincidence gamma-ray spectra. Submitted for publication in // // Nuclear Instruments and Methods in Physics Research A. // // // // These NIM papers are also available as doc or ps files from: // //Spectrum.doc
// //____________________________________________________________________________ #include "TSpectrum.h" #include "TPolyMarker.h" #include "TMath.h" Int_t TSpectrum::fgIterations = 3; Int_t TSpectrum::fgAverageWindow = 3; #define PEAK_WINDOW 1024 ClassImp(TSpectrum) //______________________________________________________________________________ TSpectrum::TSpectrum() :TNamed("Spectrum", "Miroslav Morhac peak finder") { Int_t n = 100; fMaxPeaks = n; fPosition = new Float_t[n]; fPositionX = new Float_t[n]; fPositionY = new Float_t[n]; fResolution = 1; fHistogram = 0; fNPeaks = 0; } //______________________________________________________________________________ TSpectrum::TSpectrum(Int_t maxpositions, Float_t resolution) :TNamed("Spectrum", "Miroslav Morhac peak finder") { // maxpositions: maximum number of peaks // resolution: determines resolution of the neighboring peaks // default value is 1 correspond to 3 sigma distance // between peaks. Higher values allow higher resolution // (smaller distance between peaks. // May be set later through SetResolution. Int_t n = TMath::Min(maxpositions, 100); if (n <= 0) n = 1; fMaxPeaks = n; fPosition = new Float_t[n]; fPositionX = new Float_t[n]; fPositionY = new Float_t[n]; fHistogram = 0; fNPeaks = 0; SetResolution(resolution); } //______________________________________________________________________________ TSpectrum::~TSpectrum() { delete[]fPosition; delete[]fPositionX; delete[]fPositionY; delete fHistogram; } //______________________________________________________________________________ void TSpectrum::SetAverageWindow(Int_t w) { // static function: Set average window of searched peaks // see TSpectrum::Search1HighRes fgAverageWindow = w; } //______________________________________________________________________________ void TSpectrum::SetDeconIterations(Int_t n) { // static function: Set max number of decon iterations in deconvolution operation // see TSpectrum::Search1HighRes fgIterations = n; } //______________________________________________________________________________ const char *TSpectrum::Background(TH1 * h, int fNumberIterations, Option_t * option) { ///////////////////////////////////////////////////////////////////////////// // ONE-DIMENSIONAL BACKGROUND ESTIMATION FUNCTION // // This function calculates background spectrum from source in h. // // The result is placed in the vector pointed by spectrum pointer. // // // // Function parameters: // // spectrum: pointer to the vector of source spectrum // // size: length of spectrum and working space vectors // // fNumberIterations, for details we refer to manual // // // ///////////////////////////////////////////////////////////////////////////// printf ("Background function not yet implemented: h=%s, iter=%d, option=%sn" , h->GetName(), fNumberIterations, option); return 0; } //______________________________________________________________________________ Int_t TSpectrum::Search(TH1 * hin, Double_t sigma, Option_t * option, Double_t threshold) { ///////////////////////////////////////////////////////////////////////////// // ONE-DIMENSIONAL PEAK SEARCH FUNCTION // // This function searches for peaks in source spectrum in hin // // The number of found peaks and their positions are written into // // the members fNpeaks and fPositionX. // // The search is performed in the current histogram range. // // // // Function parameters: // // hin: pointer to the histogram of source spectrum // // sigma: sigma of searched peaks, for details we refer to manual // // threshold: (default=0.05) peaks with amplitude less than // // threshold*highest_peak are discarded. 0<threshold<1 // // // // if option is not equal to "goff" (goff is the default), then // // a polymarker object is created and added to the list of functions of // // the histogram. The histogram is drawn with the specified option and // // the polymarker object drawn on top of the histogram. // // The polymarker coordinates correspond to the npeaks peaks found in // // the histogram. // // A pointer to the polymarker object can be retrieved later via: // // TList *functions = hin->GetListOfFunctions(); // // TPolyMarker *pm = (TPolyMarker*)functions->FindObject("TPolyMarker") // // // ///////////////////////////////////////////////////////////////////////////// if (hin == 0) return 0; Int_t dimension = hin->GetDimension(); if (dimension > 2) { Error("Search", "Only implemented for 1-d and 2-d histograms"); return 0; } if (threshold <=0 || threshold >= 1) { Warning("Search","threshold must 0<threshold<1, threshol=0.05 assumed"); threshold = 0.05; } if (dimension == 1) { Int_t first = hin->GetXaxis()->GetFirst(); Int_t last = hin->GetXaxis()->GetLast(); Int_t size = last-first+1; Int_t i, bin, npeaks; Float_t * source = new float[size]; Float_t * dest = new float[size]; for (i = 0; i < size; i++) source[i] = hin->GetBinContent(i + first); if (sigma <= 1) { sigma = size/fMaxPeaks; if (sigma < 1) sigma = 1; if (sigma > 8) sigma = 8; } npeaks = Search1HighRes(source, dest, size, sigma, 100*threshold, kTRUE, fgIterations, kTRUE, fgAverageWindow); //TH1 * hnew = (TH1 *) hin->Clone("markov"); //for (i = 0; i < size; i++) // hnew->SetBinContent(i + 1, source[i]); for (i = 0; i < npeaks; i++) { bin = first + Int_t(fPositionX[i] + 0.5); fPositionX[i] = hin->GetBinCenter(bin); fPositionY[i] = hin->GetBinContent(bin); } delete [] source; delete [] dest; if (strstr(option, "goff")) return npeaks; if (!npeaks) return 0; TPolyMarker * pm = (TPolyMarker*)hin->GetListOfFunctions()->FindObject("TPolyMarker"); if (pm) { hin->GetListOfFunctions()->Remove(pm); delete pm; } pm = new TPolyMarker(npeaks, fPositionX, fPositionY); hin->GetListOfFunctions()->Add(pm); pm->SetMarkerStyle(23); pm->SetMarkerColor(kRed); pm->SetMarkerSize(1.3); hin->Draw(option); return npeaks; } return 0; } //______________________________________________________________________________ void TSpectrum::SetResolution(Float_t resolution) { // resolution: determines resolution of the neighboring peaks // default value is 1 correspond to 3 sigma distance // between peaks. Higher values allow higher resolution // (smaller distance between peaks. // May be set later through SetResolution. if (resolution > 1) fResolution = resolution; else fResolution = 1; } //_____________________________________________________________________________ //_____________________________________________________________________________ /////////////////////NEW FUNCTIONS APRIL 2003 const char *TSpectrum::Background1(float *spectrum, int size, int fNumberIterations) { ///////////////////////////////////////////////////////////////////////////// /* ONE-DIMENSIONAL BACKGROUND ESTIMATION FUNCTION - INCREASING */ /* CLIPPING WINDOW */ /* This function calculates background spectrum from source spectrum. */ /* The result is placed in the vector pointed by spectrum pointer. */ /* */ /* Function parameters: */ /* spectrum-pointer to the vector of source spectrum */ /* size-length of spectrum and working space vectors */ /* fNumberIterations, for details we refer to manual */ /* */ ///////////////////////////////////////////////////////////////////////////// //
-1 DIMENSIONAL
SPECTRA
This function calculates
background spectrum from source spectrum.
The result is placed in the vector pointed by spectrum pointer. On successful completion it returns 0. On error
it returns pointer to the string describing error.
char
*Background1(float *spectrum, int size, int fNumberIterations);
Function parameters:
-spectrum-pointer
to the vector of source spectrum
-size-length
of spectrum
-fNumberIterations or width of the clipping window
The function allows to separate useless spectrum information (continuous background) from peaks, based on Sensitive Nonlinear Iterative Peak Clipping Algorithm. In fact it represents second order difference filter (-1,2,-1). The basic algorithm is described in detail in [1], [2].
References:
[1] M. Morháč, J. Kliman, V.
Matoušek, M. Veselský, I. Turzo.: Background elimination methods for multidimensional gamma-ray
spectra. NIM, A401 (1997) 113-132.
[2] C. G Ryan et al.: SNIP, a
statistics-sensitive background treatment for the quantitative analysis of PIXE
spectra in geoscience applications. NIM, B34 (1988), 396-402.
int i, j; float a, b; if (size <= 0) return "Wrong Parameters"; if (fNumberIterations < 1) return "Width of Clipping Window Must Be Positive"; if (size < 2 * fNumberIterations + 1) return "Too Large Clipping Window"; float *working_space = new float[size]; for (i = 1; i <= fNumberIterations; i++) { for (j = i; j < size - i; j++) { a = spectrum[j]; b = (spectrum[j - i] + spectrum[j + i]) / 2.0; if (b < a) a = b; working_space[j] = a; } for (j = i; j < size - i; j++) spectrum[j] = working_space[j]; } delete[]working_space; return 0; } //_______________________________________________________________________________ const char *TSpectrum::Background1General(float *spectrum, int size, int fNumberIterations, int direction, int filter_order, bool compton) { ///////////////////////////////////////////////////////////////////////////// /* ONE-DIMENSIONAL BACKGROUND ESTIMATION FUNCTION - GENERAL FUNCTION */ /* */ /* This function calculates background spectrum from source spectrum. */ /* The result is placed in the vector pointed by spectrum pointer. */ /* */ /* Function parameters: */ /* spectrum-pointer to the vector of source spectrum */ /* size-length of spectrum vector */ /* fNumberIterations-maximal width of clipping window, */ /* for details we refer to manual */ /* direction- direction of change of clipping window */ /* - possible values=kBackIncreasingWindow */ /* kBackDecreasingWindow */ /* filter_order-order of clipping filter, */ /* -possible values=kBackOrder2 */ /* kBackOrder4 */ /* kBackOrder6 */ /* kBackOrder8 */ /* compton- logical variable whether the estimation of Compton edge */ /* will be incuded */ /* - possible values=kBackExcludeCompton */ /* kBackIncludeCompton */ /* */ ///////////////////////////////////////////////////////////////////////////// int i, j, b1, b2, priz; float a, b, c, d, e, yb1, yb2, ai; if (size <= 0) return "Wrong Parameters"; if (fNumberIterations < 1) return "Width of Clipping Window Must Be Positive"; if (size < 2 * fNumberIterations + 1) return "Too Large Clipping Window"; float *working_space = new float[2 * size]; for (i = 0; i < size; i++) working_space[i + size] = spectrum[i]; if (direction == kBackIncreasingWindow) { if (filter_order == kBackOrder2) { for (i = 1; i <= fNumberIterations; i++) { for (j = i; j < size - i; j++) { a = working_space[size + j]; b = (working_space[size + j - i] + working_space[size + j + i]) / 2.0; if (b < a) a = b; working_space[j] = a; } for (j = i; j < size - i; j++) working_space[size + j] = working_space[j]; } } else if (filter_order == kBackOrder4) { for (i = 1; i <= fNumberIterations; i++) { for (j = i; j < size - i; j++) { a = working_space[size + j]; b = (working_space[size + j - i] + working_space[size + j + i]) / 2.0; c = 0; ai = i / 2; c -= working_space[size + j - (int) (2 * ai)] / 6; c += 4 * working_space[size + j - (int) ai] / 6; c += 4 * working_space[size + j + (int) ai] / 6; c -= working_space[size + j + (int) (2 * ai)] / 6; if (b < c) b = c; if (b < a) a = b; working_space[j] = a; } for (j = i; j < size - i; j++) working_space[size + j] = working_space[j]; } } else if (filter_order == kBackOrder6) { for (i = 1; i <= fNumberIterations; i++) { for (j = i; j < size - i; j++) { a = working_space[size + j]; b = (working_space[size + j - i] + working_space[size + j + i]) / 2.0; c = 0; ai = i / 2; c -= working_space[size + j - (int) (2 * ai)] / 6; c += 4 * working_space[size + j - (int) ai] / 6; c += 4 * working_space[size + j + (int) ai] / 6; c -= working_space[size + j + (int) (2 * ai)] / 6; d = 0; ai = i / 3; d += working_space[size + j - (int) (3 * ai)] / 20; d -= 6 * working_space[size + j - (int) (2 * ai)] / 20; d += 15 * working_space[size + j - (int) ai] / 20; d += 15 * working_space[size + j + (int) ai] / 20; d -= 6 * working_space[size + j + (int) (2 * ai)] / 20; d += working_space[size + j + (int) (3 * ai)] / 20; if (b < d) b = d; if (b < c) b = c; if (b < a) a = b; working_space[j] = a; } for (j = i; j < size - i; j++) working_space[size + j] = working_space[j]; } } else if (filter_order == kBackOrder8) { for (i = 1; i <= fNumberIterations; i++) { for (j = i; j < size - i; j++) { a = working_space[size + j]; b = (working_space[size + j - i] + working_space[size + j + i]) / 2.0; c = 0; ai = i / 2; c -= working_space[size + j - (int) (2 * ai)] / 6; c += 4 * working_space[size + j - (int) ai] / 6; c += 4 * working_space[size + j + (int) ai] / 6; c -= working_space[size + j + (int) (2 * ai)] / 6; d = 0; ai = i / 3; d += working_space[size + j - (int) (3 * ai)] / 20; d -= 6 * working_space[size + j - (int) (2 * ai)] / 20; d += 15 * working_space[size + j - (int) ai] / 20; d += 15 * working_space[size + j + (int) ai] / 20; d -= 6 * working_space[size + j + (int) (2 * ai)] / 20; d += working_space[size + j + (int) (3 * ai)] / 20; e = 0; ai = i / 4; e -= working_space[size + j - (int) (4 * ai)] / 70; e += 8 * working_space[size + j - (int) (3 * ai)] / 70; e -= 28 * working_space[size + j - (int) (2 * ai)] / 70; e += 56 * working_space[size + j - (int) ai] / 70; e += 56 * working_space[size + j + (int) ai] / 70; e -= 28 * working_space[size + j + (int) (2 * ai)] / 70; e += 8 * working_space[size + j + (int) (3 * ai)] / 70; e -= working_space[size + j + (int) (4 * ai)] / 70; if (b < e) b = e; if (b < d) b = d; if (b < c) b = c; if (b < a) a = b; working_space[j] = a; } for (j = i; j < size - i; j++) working_space[size + j] = working_space[j]; } } } else if (direction == kBackDecreasingWindow) { if (filter_order == kBackOrder2) { for (i = fNumberIterations; i >= 1; i--) { for (j = i; j < size - i; j++) { a = working_space[size + j]; b = (working_space[size + j - i] + working_space[size + j + i]) / 2.0; if (b < a) a = b; working_space[j] = a; } for (j = i; j < size - i; j++) working_space[size + j] = working_space[j]; } } else if (filter_order == kBackOrder4) { for (i = fNumberIterations; i >= 1; i--) { for (j = i; j < size - i; j++) { a = working_space[size + j]; b = (working_space[size + j - i] + working_space[size + j + i]) / 2.0; c = 0; ai = i / 2; c -= working_space[size + j - (int) (2 * ai)] / 6; c += 4 * working_space[size + j - (int) ai] / 6; c += 4 * working_space[size + j + (int) ai] / 6; c -= working_space[size + j + (int) (2 * ai)] / 6; if (b < c) b = c; if (b < a) a = b; working_space[j] = a; } for (j = i; j < size - i; j++) working_space[size + j] = working_space[j]; } } else if (filter_order == kBackOrder6) { for (i = fNumberIterations; i >= 1; i--) { for (j = i; j < size - i; j++) { a = working_space[size + j]; b = (working_space[size + j - i] + working_space[size + j + i]) / 2.0; c = 0; ai = i / 2; c -= working_space[size + j - (int) (2 * ai)] / 6; c += 4 * working_space[size + j - (int) ai] / 6; c += 4 * working_space[size + j + (int) ai] / 6; c -= working_space[size + j + (int) (2 * ai)] / 6; d = 0; ai = i / 3; d += working_space[size + j - (int) (3 * ai)] / 20; d -= 6 * working_space[size + j - (int) (2 * ai)] / 20; d += 15 * working_space[size + j - (int) ai] / 20; d += 15 * working_space[size + j + (int) ai] / 20; d -= 6 * working_space[size + j + (int) (2 * ai)] / 20; d += working_space[size + j + (int) (3 * ai)] / 20; if (b < d) b = d; if (b < c) b = c; if (b < a) a = b; working_space[j] = a; } for (j = i; j < size - i; j++) working_space[size + j] = working_space[j]; } } else if (filter_order == kBackOrder8) { for (i = fNumberIterations; i >= 1; i--) { for (j = i; j < size - i; j++) { a = working_space[size + j]; b = (working_space[size + j - i] + working_space[size + j + i]) / 2.0; c = 0; ai = i / 2; c -= working_space[size + j - (int) (2 * ai)] / 6; c += 4 * working_space[size + j - (int) ai] / 6; c += 4 * working_space[size + j + (int) ai] / 6; c -= working_space[size + j + (int) (2 * ai)] / 6; d = 0; ai = i / 3; d += working_space[size + j - (int) (3 * ai)] / 20; d -= 6 * working_space[size + j - (int) (2 * ai)] / 20; d += 15 * working_space[size + j - (int) ai] / 20; d += 15 * working_space[size + j + (int) ai] / 20; d -= 6 * working_space[size + j + (int) (2 * ai)] / 20; d += working_space[size + j + (int) (3 * ai)] / 20; e = 0; ai = i / 4; e -= working_space[size + j - (int) (4 * ai)] / 70; e += 8 * working_space[size + j - (int) (3 * ai)] / 70; e -= 28 * working_space[size + j - (int) (2 * ai)] / 70; e += 56 * working_space[size + j - (int) ai] / 70; e += 56 * working_space[size + j + (int) ai] / 70; e -= 28 * working_space[size + j + (int) (2 * ai)] / 70; e += 8 * working_space[size + j + (int) (3 * ai)] / 70; e -= working_space[size + j + (int) (4 * ai)] / 70; if (b < e) b = e; if (b < d) b = d; if (b < c) b = c; if (b < a) a = b; working_space[j] = a; } for (j = i; j < size - i; j++) working_space[size + j] = working_space[j]; } } } if (compton == kBackIncludeCompton) { for (i = 0, b2 = 0; i < size; i++) { b1 = b2; a = working_space[i], b = spectrum[i]; j = i; if (TMath::Abs(a - b) >= 1) { b1 = i - 1; if (b1 < 0) b1 = 0; yb1 = spectrum[b1]; for (b2 = b1 + 1, c = 0, priz = 0; priz == 0 && b2 < size; b2++) { a = working_space[b2], b = spectrum[b2]; c = c + b - yb1; if (TMath::Abs(a - b) < 1) { priz = 1; yb2 = b; } } if (b2 == size) b2 -= 1; yb2 = spectrum[b2]; if (yb1 <= yb2) { for (j = b1, c = 0; j <= b2; j++) { b = spectrum[j]; c = c + b - yb1; } if (c > 1) { c = (yb2 - yb1) / c; for (j = b1, d = 0; j <= b2 && j < size; j++) { b = spectrum[j]; d = d + b - yb1; a = c * d + yb1; if (a < spectrum[j]) working_space[size + j] = a; } } } else { for (j = b2, c = 0; j >= b1; j--) { b = spectrum[j]; c = c + b - yb2; } if (c > 1) { c = (yb1 - yb2) / c; for (j = b2, d = 0; j >= b1 && j >= 0; j--) { b = spectrum[j]; d = d + b - yb2; a = c * d + yb2; if (a < spectrum[j]) working_space[size + j] = a; } } } i = b2; } } } for (j = 0; j < size; j++) spectrum[j] = working_space[size + j]; delete[]working_space; return 0; } //_____________________________________________________________________________ const char* TSpectrum::Smooth1Markov(float *source, int size, int aver_window) { ///////////////////////////////////////////////////////////////////////////// /* ONE-DIMENSIONAL MARKOV SPECTRUM SMOOTHING FUNCTION */ /* */ /* This function calculates smoothed spectrum from source spectrum */ /* based on Markov chain method. */ /* The result is placed in the array pointed by source pointer. */ /* */ /* Function parameters: */ /* source-pointer to the array of source spectrum */ /* size length of source array */ /* aver_window-width of averaging smoothing window */ /* */ ///////////////////////////////////////////////////////////////////////////// int fXmin, fXmax, i, l; float a, b, maxch; float nom, nip, nim, sp, sm, plocha = 0; if(aver_window <= 0) return "Averaging Window must be positive"; float *working_space = new float[size]; fXmin = 0,fXmax = size - 1; for(i = 0, maxch = 0; i < size; i++){ working_space[i]=0; if(maxch < source[i]) maxch = source[i]; plocha += source[i]; } if(maxch == 0) return 0 ; nom = 1; working_space[fXmin] = 1; for(i = fXmin; i < fXmax; i++){ nip = source[i] / maxch; nim = source[i + 1] / maxch; sp = 0,sm = 0; for(l = 1; l <= aver_window; l++){ if((i + l) > fXmax) a = source[fXmax] / maxch; else a = source[i + l] / maxch; b = a - nip; if(a + nip <= 0) a = 1; else a = TMath::Sqrt(a + nip); b = b / a; b = TMath::Exp(b); sp = sp + b; if((i - l + 1) < fXmin) a = source[fXmin] / maxch; else a = source[i - l + 1] / maxch; b = a - nim; if(a + nim <= 0) a = 1; else a = TMath::Sqrt(a + nim); b = b / a; b = TMath::Exp(b); sm = sm + b; } a = sp / sm; a = working_space[i + 1] = working_space[i] * a; nom = nom + a; } for(i = fXmin; i <= fXmax; i++){ working_space[i] = working_space[i] / nom; } for(i = 0; i < size; i++) source[i] = working_space[i] * plocha; delete[]working_space; return 0; } //_______________________________________________________________________________ const char *TSpectrum::Deconvolution1(float *source, const float *resp, int size, int fNumberIterations) { ///////////////////////////////////////////////////////////////////////////// // ONE-DIMENSIONAL DECONVOLUTION FUNCTION // // This function calculates deconvolution from source spectrum // // according to response spectrum // // The result is placed in the vector pointed by source pointer. // // // // Function parameters: // // source: pointer to the vector of source spectrum // // res: pointer to the vector of response spectrum // // size: length of source and response spectra // // fNumberIterations, for details we refer to this reference: // // // // M. Morhac, J. Kliman, V. Matousek, M. Veselský, I. Turzo.: // // Efficient one- and two-dimensional Gold deconvolution and its // // application to gamma-ray spectra decomposition. // // NIM, A401 (1997) 385-408. // // // ///////////////////////////////////////////////////////////////////////////// if (size <= 0) return "Wrong Parameters"; // working_space-pointer to the working vector // (its size must be 6*size of source spectrum) double *working_space = new double[6 * size]; int i, j, k, lindex, posit, imin, imax, jmin, jmax, lh_gold; double lda, ldb, ldc, area, maximum; area = 0; lh_gold = -1; posit = 0; maximum = 0; //read response vector for (i = 0; i < size; i++) { lda = resp[i]; if (lda != 0) lh_gold = i + 1; working_space[i] = lda; area += lda; if (lda > maximum) { maximum = lda; posit = i; } } if (lh_gold == -1) return "ZERO RESPONSE VECTOR"; //read source vector for (i = 0; i < size; i++) working_space[2 * size + i] = source[i]; //create matrix at*a(vector b) i = lh_gold - 1; if (i > size) i = size; imin = -i, imax = i; for (i = imin; i <= imax; i++) { lda = 0; jmin = 0; if (i < 0) jmin = -i; jmax = lh_gold - 1 - i; if (jmax > (lh_gold - 1)) jmax = lh_gold - 1; for (j = jmin; j <= jmax; j++) { ldb = working_space[j]; ldc = working_space[i + j]; lda = lda + ldb * ldc; } working_space[size + i - imin] = lda; } //create vector p i = lh_gold - 1; imin = -i; imax = size + i - 1; for (i = imin; i <= imax; i++) { lda = 0; for (j = 0; j <= (lh_gold - 1); j++) { ldb = working_space[j]; k = i + j; if (k >= 0 && k < size) { ldc = working_space[2 * size + k]; lda = lda + ldb * ldc; } } working_space[4 * size + i - imin] = lda; } //move vector p for (i = imin; i <= imax; i++) working_space[2 * size + i - imin] = working_space[4 * size + i - imin]; //create at*a*at*y (vector ysc) for (i = 0; i < size; i++) { lda = 0; j = lh_gold - 1; jmin = -j; jmax = j; for (j = jmin; j <= jmax; j++) { ldb = working_space[j - jmin + size]; ldc = working_space[2 * size + i + j - jmin]; lda = lda + ldb * ldc; } working_space[4 * size + i] = lda; } //move ysc for (i = 0; i < size; i++) working_space[2 * size + i] = working_space[4 * size + i]; //create vector c// i = 2 * lh_gold - 2; if (i > size) i = size; imin = -i; imax = i; for (i = imin; i <= imax; i++) { lda = 0; jmin = -lh_gold + 1 + i; if (jmin < (-lh_gold + 1)) jmin = -lh_gold + 1; jmax = lh_gold - 1 + i; if (jmax > (lh_gold - 1)) jmax = lh_gold - 1; for (j = jmin; j <= jmax; j++) { ldb = working_space[j + lh_gold - 1 + size]; ldc = working_space[i - j + lh_gold - 1 + size]; lda = lda + ldb * ldc; } working_space[i - imin] = lda; } //move vector c for (i = 0; i < size; i++) working_space[i + size] = working_space[i]; //initialization of resulting vector for (i = 0; i < size; i++) working_space[i] = 1; //**START OF ITERATIONS** for (lindex = 0; lindex < fNumberIterations; lindex++) { for (i = 0; i < size; i++) { if (working_space[2 * size + i] > 0.000001 && working_space[i] > 0.000001) { lda = 0; jmin = 2 * lh_gold - 2; if (jmin > i) jmin = i; jmin = -jmin; jmax = 2 * lh_gold - 2; if (jmax > (size - 1 - i)) jmax = size - 1 - i; for (j = jmin; j <= jmax; j++) { ldb = working_space[j + 2 * lh_gold - 2 + size]; ldc = working_space[i + j]; lda = lda + ldb * ldc; } ldb = working_space[2 * size + i]; if (lda != 0) lda = ldb / lda; else lda = 0; ldb = working_space[i]; lda = lda * ldb; working_space[3 * size + i] = lda; } } for (i = 0; i < size; i++) working_space[i] = working_space[3 * size + i]; } //shift resulting spectrum for (i = 0; i < size; i++) { lda = working_space[i]; j = i + posit; j = j % size; working_space[size + j] = lda; } //write back resulting spectrum for (i = 0; i < size; i++) source[i] = area * working_space[size + i]; delete[]working_space; return 0; } //_______________________________________________________________________________ double TSpectrum::Lls(double a) { ///////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // LLS operator. It calculates log(log(sqrt(a+1))) value of a. // // // ///////////////////////////////////////////////////////////////////////////// if (a < 0) a = 0; a = TMath::Sqrt(a + 1.0); a = TMath::Log(a + 1.0); a = TMath::Log(a + 1.0); return (a); } const char *TSpectrum::Deconvolution1HighResolution(float *source, const float *resp, int size, int fNumberIterations, int number_of_repetitions, double boost) { ///////////////////////////////////////////////////////////////////////////// /* ONE-DIMENSIONAL HIGH RESOLUTION DECONVOLUTION FUNCTION */ /* This function calculates deconvolution from source spectrum */ /* according to response spectrum */ /* The result is placed in the vector pointed by source pointer. */ /* */ /* Function parameters: */ /* source-pointer to the vector of source spectrum */ /* resp-pointer to the vector of response spectrum */ /* size-length of source and response spectra */ /* fNumberIterations, for details we refer to manual */ /* number_of_repetitions, for details we refer to manual */ /* boost, boosting factor, for details we refer to manual */ /* */ ///////////////////////////////////////////////////////////////////////////// int i, j, k, m, lindex, posit, imin, imax, jmin, jmax, lh_gold, iter, repet; double lda, ldb, ldc, lday, ldby, area, maximum; double a; if (size <= 0) return "Wrong Parameters"; if (fNumberIterations <= 0) return "Number of iterations must be positive"; if (number_of_repetitions <= 0) return "Number of repetitions must be positive"; if (boost <= 0) return ("Boosting Factor Must be Positive Number"); // working_space-pointer to the working vector // (its size must be 7*size of source spectrum) double *working_space = new double[7 * size]; for (i = size, iter = 0, j = 1; i > 1;) { iter += 1; i = i / 2; j = j * 2; } if (j != size) return ("SIZE MUST BE POWER OF 2"); area = 0; lh_gold = -1; posit = 0; maximum = 0; //read response vector for (i = 0; i < size; i++) { lda = resp[i]; if (lda != 0) lh_gold = i + 1; working_space[i] = lda; area = area + lda; if (lda > maximum) { maximum = lda; posit = i; } } if (lh_gold == -1) return ("ZERO RESPONSE VECTOR"); /////////TOEPLITZ MATRIX INVERSION////////////////////////// //read source vector for (i = 0; i < size; i++) { working_space[size + i] = source[i]; } for (i = 0; i < size; i++) { lda = 0, lday = 0; for (j = i; j < size; j++) { ldb = working_space[j]; ldc = working_space[j - i]; lda += ldb * ldc; ldby = working_space[j + size]; lday += ldby * ldc; } working_space[i + 3 * size] = lda; working_space[i + 4 * size] = lday; } for (i = 0; i < 2 * size; i++) working_space[i] = working_space[i + 3 * size]; a = working_space[0]; if (a == 0) return ("SINGULAR MATRIX"); working_space[3 * size + 2 * size] = working_space[size] / a; working_space[3 * size] = working_space[1] / a; for (m = 1; m < size; m++) { a = working_space[0]; working_space[3 * size + m + size] = working_space[m + 1]; working_space[3 * size + m + 3 * size] = working_space[m + size]; lda = 0, ldb = 0, ldc = 0; for (j = 1; j <= m; j++) { lda += working_space[j] * working_space[3 * size + j - 1]; ldb += working_space[m + 1 - j] * working_space[3 * size + j - 1]; ldc += working_space[m + 1 - j] * working_space[3 * size + j - 1 + 2 * size]; } a -= lda; working_space[3 * size + m + size] -= ldb; working_space[3 * size + m + 3 * size] -= ldc; if (a == 0) return ("SINGULAR MATRIX"); working_space[3 * size + m + size] /= a; working_space[3 * size + m + 3 * size] /= a; for (j = 1; j <= m; j++) { working_space[3 * size + j - 1 + size] = working_space[3 * size + j - 1] - working_space[3 * size + m + size] * working_space[3 * size + m - j]; working_space[3 * size + j - 1 + 3 * size] = working_space[3 * size + j - 1 + 2 * size] - working_space[3 * size + m + 3 * size] * working_space[3 * size + m - j]; } for (i = 0; i <= m; i++) { working_space[3 * size + i] = working_space[3 * size + i + size]; working_space[3 * size + i + 2 * size] = working_space[3 * size + i + 3 * size]; } } for (i = 0; i < size; i++) working_space[i] = working_space[3 * size + i + 2 * size]; //////////////////////*Fourier deconvolution*/////////////////////////// for (i = 0; i < size; i++) { working_space[6 * size + i] = Lls(working_space[i]); } ////////////////////End of Fourier deconvolution/////////////////////// //read response vector for (i = 0; i < size; i++) working_space[i] = resp[i]; //read source vector for (i = 0; i < size; i++) working_space[2 * size + i] = source[i]; //create matrix at*a(vector b) i = lh_gold - 1; if (i > size) i = size; imin = -i, imax = i; for (i = imin; i <= imax; i++) { lda = 0; jmin = 0; if (i < 0) jmin = -i; jmax = lh_gold - 1 - i; if (jmax > (lh_gold - 1)) jmax = lh_gold - 1; for (j = jmin; j <= jmax; j++) { ldb = working_space[j]; ldc = working_space[i + j]; lda = lda + ldb * ldc; } working_space[size + i - imin] = lda; } //create vector p i = lh_gold - 1; imin = -i, imax = size + i - 1; for (i = imin; i <= imax; i++) { lda = 0; for (j = 0; j <= (lh_gold - 1); j++) { ldb = working_space[j]; k = i + j; if (k >= 0 && k < size) { ldc = working_space[2 * size + k]; lda = lda + ldb * ldc; } } working_space[4 * size + i - imin] = lda; } //move vector p for (i = imin; i <= imax; i++) working_space[2 * size + i - imin] = working_space[4 * size + i - imin]; //create at*a*at*y (vector ysc) for (i = 0; i < size; i++) { lda = 0; j = lh_gold - 1; jmin = -j, jmax = j; for (j = jmin; j <= jmax; j++) { ldb = working_space[j - jmin + size]; ldc = working_space[2 * size + i + j - jmin]; lda = lda + ldb * ldc; } working_space[4 * size + i] = lda; } //move ysc for (i = 0; i < size; i++) working_space[2 * size + i] = working_space[4 * size + i]; //create vector c i = 2 * lh_gold - 2; if (i > size) i = size; imin = -i, imax = i; for (i = imin; i <= imax; i++) { lda = 0; jmin = -lh_gold + 1 + i; if (jmin < (-lh_gold + 1)) jmin = -lh_gold + 1; jmax = lh_gold - 1 + i; if (jmax > (lh_gold - 1)) jmax = lh_gold - 1; for (j = jmin; j <= jmax; j++) { ldb = working_space[j + lh_gold - 1 + size]; ldc = working_space[i - j + lh_gold - 1 + size]; lda = lda + ldb * ldc; } working_space[i - imin] = lda; } //move vector c for (i = 0; i < size; i++) working_space[i + size] = working_space[i]; //initialization of resulting vector for (i = 0, a = 0; i < size; i++) { working_space[i] = working_space[6 * size + i]; a += working_space[6 * size + i]; } for (i = 0; i < size; i++) { working_space[i] = working_space[i] / a; } //////START OF ITERATIONS//// for (repet = 0; repet < number_of_repetitions; repet++) { if (repet != 0) { for (i = 0; i < size; i++) working_space[i] = TMath::Power(working_space[i], boost); } for (lindex = 0; lindex < fNumberIterations; lindex++) { for (i = 0; i < size; i++) { lda = 0; jmin = 2 * lh_gold - 2; if (jmin > i) jmin = i; jmin = -jmin; jmax = 2 * lh_gold - 2; if (jmax > (size - 1 - i)) jmax = size - 1 - i; for (j = jmin; j <= jmax; j++) { ldb = working_space[j + 2 * lh_gold - 2 + size]; ldc = working_space[i + j]; lda = lda + ldb * ldc; } ldb = working_space[2 * size + i]; if (lda != 0) lda = ldb / lda; else lda = 0; ldb = working_space[i]; lda = lda * ldb; working_space[3 * size + i] = lda; } for (i = 0; i < size; i++) working_space[i] = working_space[3 * size + i]; } } //shift resulting spectrum for (i = 0; i < size; i++) { lda = working_space[i]; j = i + posit; j = j % size; working_space[size + j] = lda; } //write back resulting spectrum for (i = 0; i < size; i++) source[i] = area * working_space[size + i]; delete[]working_space; return 0; } //_______________________________________________________________________________ const char *TSpectrum::Deconvolution1Unfolding(float *source, const float **resp, int sizex, int sizey, int fNumberIterations) { ///////////////////////////////////////////////////////////////////////////// /* ONE-DIMENSIONAL UNFOLDING FUNCTION */ /* This function unfolds source spectrum */ /* according to response matrix columns. */ /* The result is placed in the vector pointed by source pointer. */ /* */ /* Function parameters: */ /* source-pointer to the vector of source spectrum */ /* resp-pointer to the matrix of response spectra */ /* sizex-length of source spectrum and # of columns of response matrix */ /* sizey-length of destination spectrum and # of rows of */ /* response matrix */ /* fNumberIterations, for details we refer to manual */ /* Note!!! sizex must be >= sizey */ ///////////////////////////////////////////////////////////////////////////// int i, j, k, lindex, lhx = 0; double lda, ldb, ldc, area; if (sizex <= 0 || sizey <= 0) return "Wrong Parameters"; if (sizex < sizey) return "Sizex must be greater than sizey)"; if (fNumberIterations <= 0) return "Number of iterations must be positive"; double *working_space = new double[sizex * sizey + 2 * sizey * sizey + 4 * sizex]; /*read response matrix*/ for (j = 0; j < sizey && lhx != -1; j++) { area = 0; lhx = -1; for (i = 0; i < sizex; i++) { lda = resp[j][i]; if (lda != 0) { lhx = i + 1; } working_space[j * sizex + i] = lda; area = area + lda; } if (lhx != -1) { for (i = 0; i < sizex; i++) working_space[j * sizex + i] /= area; } } if (lhx == -1) return ("ZERO COLUMN IN RESPONSE MATRIX"); /*read source vector*/ for (i = 0; i < sizex; i++) working_space[sizex * sizey + 2 * sizey * sizey + 2 * sizex + i] = source[i]; /*create matrix at*a + at*y */ for (i = 0; i < sizey; i++) { for (j = 0; j < sizey; j++) { lda = 0; for (k = 0; k < sizex; k++) { ldb = working_space[sizex * i + k]; ldc = working_space[sizex * j + k]; lda = lda + ldb * ldc; } working_space[sizex * sizey + sizey * i + j] = lda; } lda = 0; for (k = 0; k < sizex; k++) { ldb = working_space[sizex * i + k]; ldc = working_space[sizex * sizey + 2 * sizey * sizey + 2 * sizex + k]; lda = lda + ldb * ldc; } working_space[sizex * sizey + 2 * sizey * sizey + 3 * sizex + i] = lda; } /*move vector at*y*/ for (i = 0; i < sizey; i++) working_space[sizex * sizey + 2 * sizey * sizey + 2 * sizex + i] = working_space[sizex * sizey + 2 * sizey * sizey + 3 * sizex + i]; /*create matrix at*a*at*a + vector at*a*at*y */ for (i = 0; i < sizey; i++) { for (j = 0; j < sizey; j++) { lda = 0; for (k = 0; k < sizey; k++) { ldb = working_space[sizex * sizey + sizey * i + k]; ldc = working_space[sizex * sizey + sizey * j + k]; lda = lda + ldb * ldc; } working_space[sizex * sizey + sizey * sizey + sizey * i + j] = lda; } lda = 0; for (k = 0; k < sizey; k++) { ldb = working_space[sizex * sizey + sizey * i + k]; ldc = working_space[sizex * sizey + 2 * sizey * sizey + 2 * sizex + k]; lda = lda + ldb * ldc; } working_space[sizex * sizey + 2 * sizey * sizey + 3 * sizex + i] = lda; } /*move at*a*at*y*/ for (i = 0; i < sizey; i++) working_space[sizex * sizey + 2 * sizey * sizey + 2 * sizex + i] = working_space[sizex * sizey + 2 * sizey * sizey + 3 * sizex + i]; /*initialization in resulting vectore */ for (i = 0; i < sizey; i++) working_space[sizex * sizey + 2 * sizey * sizey + i] = 1; /***START OF ITERATIONS***/ for (lindex = 0; lindex < fNumberIterations; lindex++) { for (i = 0; i < sizey; i++) { lda = 0; for (j = 0; j < sizey; j++) { ldb = working_space[sizex * sizey + sizey * sizey + sizey * i + j]; ldc = working_space[sizex * sizey + 2 * sizey * sizey + j]; lda = lda + ldb * ldc; } ldb = working_space[sizex * sizey + 2 * sizey * sizey + 2 * sizex + i]; if (lda != 0) { lda = ldb / lda; } else lda = 0; ldb = working_space[sizex * sizey + 2 * sizey * sizey + i]; lda = lda * ldb; working_space[sizex * sizey + 2 * sizey * sizey + 3 * sizex + i] = lda; } for (i = 0; i < sizey; i++) working_space[sizex * sizey + 2 * sizey * sizey + i] = working_space[sizex * sizey + 2 * sizey * sizey + 3 * sizex + i]; } /*write back resulting spectrum*/ for (i = 0; i < sizex; i++) { if (i < sizey) source[i] = working_space[sizex * sizey + 2 * sizey * sizey + i]; else source[i] = 0; } delete[]working_space; return 0; } //_____________________________________________________________________________ Int_t TSpectrum::Search1HighRes(float *source,float *dest, int size, float sigma, double threshold, bool background_remove,int decon_iterations, bool markov, int aver_window) { ///////////////////////////////////////////////////////////////////////////// /* ONE-DIMENSIONAL HIGH-RESOLUTION PEAK SEARCH FUNCTION */ /* This function searches for peaks in source spectrum */ /* It is based on deconvolution method. First the background is */ /* removed (if desired), then Markov spectrum is calculated */ /* (if desired), then the response function is generated */ /* according to given sigma and deconvolution is carried out. */ /* */ /* Function parameters: */ /* source-pointer to the vector of source spectrum */ /* dest-pointer to the vector of resulting deconvolved spectrum */ /* size-length of source spectrum */ /* sigma-sigma of searched peaks, for details we refer to manual */ /* threshold-threshold value in % for selected peaks, peaks with */ /* amplitude less than threshold*highest_peak/100 */ /* are ignored, see manual */ /* background_remove-logical variable, set if the removal of */ /* background before deconvolution is desired */ /* decon_iterations-number of iterations in deconvolution operation */ /* markov-logical variable, if it is true, first the source spectrum */ /* is replaced by new spectrum calculated using Markov */ /* chains method. */ /* aver_window-averanging window of searched peaks, for details */ /* we refer to manual (applies only for Markov method) */ /* */ ///////////////////////////////////////////////////////////////////////////// int i, j, fNumberIterations = (int)(7 * sigma + 0.5); float a, b; int k, lindex, posit, imin, imax, jmin, jmax, lh_gold; double lda, ldb, ldc, area, maximum, maximum_decon; int fXmin, fXmax, l, peak_index = 0, size_ext = size + 2 * fNumberIterations, shift = fNumberIterations; float maxch; float nom, nip, nim, sp, sm, plocha = 0; if (sigma < 1) { Error("Search1HighRes", "Invalid sigma, must be greater than or equal to 1"); return 0; } if(threshold<=0||threshold>=100){ Error("Search1HighRes", "Invalid threshold, must be positive and less than 100"); return 0; } j = (int) (5.0 * sigma + 0.5); if (j >= PEAK_WINDOW / 2) { Error("Search1HighRes", "Too large sigma"); return 0; } if (markov == true) { if (aver_window <= 0) { Error("Search1HighRes", "Averanging window must be positive"); return 0; } } if(background_remove == true){ if(size < 2 * fNumberIterations + 1){ Error("Search1HighRes", "Too large clipping window"); return 0; } } i = (int)(7 * sigma + 0.5); i = 2 * i; double *working_space = new double [7 * (size + i)]; for(i = 0; i < size_ext; i++){ if(i < shift) working_space[i + size_ext] = source[0]; else if(i >= size + shift) working_space[i + size_ext] = source[size - 1]; else working_space[i + size_ext] = source[i - shift]; } if(background_remove == true){ for(i = 1; i <= fNumberIterations; i++){ for(j = i; j < size_ext - i; j++){ a = working_space[size_ext + j]; b = (working_space[size_ext + j - i] + working_space[size_ext + j + i]) / 2.0; if(b < a) a = b; working_space[j]=a; } for(j = i; j < size_ext - i; j++) working_space[size_ext + j] = working_space[j]; } for(j = 0;j < size_ext; j++){ if(j < shift) working_space[size_ext + j] = source[0] - working_space[size_ext + j]; else if(j >= size + shift) working_space[size_ext + j] = source[size - 1] - working_space[size_ext + j]; else{ working_space[size_ext + j] = source[j - shift] - working_space[size_ext + j]; } } } for(i = 0; i < size_ext; i++){ working_space[i + 6*size_ext] = working_space[i + size_ext]; } if(markov == true){ for(j = 0; j < size_ext; j++) working_space[2 * size_ext + j] = working_space[size_ext + j]; fXmin = 0,fXmax = size_ext - 1; for(i = 0, maxch = 0; i < size_ext; i++){ working_space[i] = 0; if(maxch < working_space[2 * size_ext + i]) maxch = working_space[2 * size_ext + i]; plocha += working_space[2 * size_ext + i]; } if(maxch == 0) return 0; nom = 1; working_space[fXmin] = 1; for(i = fXmin; i < fXmax; i++){ nip = working_space[2 * size_ext + i] / maxch; nim = working_space[2 * size_ext + i + 1] / maxch; sp = 0,sm = 0; for(l = 1; l <= aver_window; l++){ if((i + l) > fXmax) a = working_space[2 * size_ext + fXmax] / maxch; else a = working_space[2 * size_ext + i + l] / maxch; b = a - nip; if(a + nip <= 0) a=1; else a = TMath::Sqrt(a + nip); b = b / a; b = TMath::Exp(b); sp = sp + b; if((i - l + 1) < fXmin) a = working_space[2 * size_ext + fXmin] / maxch; else a = working_space[2 * size_ext + i - l + 1] / maxch; b = a - nim; if(a + nim <= 0) a = 1; else a = TMath::Sqrt(a + nim); b = b / a; b = TMath::Exp(b); sm = sm + b; } a = sp / sm; a = working_space[i + 1] = working_space[i] * a; nom = nom + a; } for(i = fXmin; i <= fXmax; i++){ working_space[i] = working_space[i] / nom; } for(j = 0; j < size_ext; j++) working_space[size_ext + j] = working_space[j] * plocha; for(j = 0; j < size_ext; j++){ working_space[2 * size_ext + j] = working_space[size_ext + j]; } if(background_remove == true){ for(i = 1; i <= fNumberIterations; i++){ for(j = i; j < size_ext - i; j++){ a = working_space[size_ext + j]; b = (working_space[size_ext + j - i] + working_space[size_ext + j + i]) / 2.0; if(b < a) a = b; working_space[j] = a; } for(j = i; j < size_ext - i; j++) working_space[size_ext + j] = working_space[j]; } for(j = 0; j < size_ext; j++){ working_space[size_ext + j] = working_space[2 * size_ext + j] - working_space[size_ext + j]; } } } //deconvolution starts area = 0; lh_gold = -1; posit = 0; maximum = 0; //generate response vector for(i = 0; i < size_ext; i++){ lda = (double)i - 3 * sigma; lda = lda * lda / (2 * sigma * sigma); j = (int)(1000 * TMath::Exp(-lda)); lda = j; if(lda != 0) lh_gold = i + 1; working_space[i] = lda; area = area + lda; if(lda > maximum){ maximum = lda; posit = i; } } //read source vector for(i = 0; i < size_ext; i++) working_space[2 * size_ext + i] = TMath::Abs(working_space[size_ext + i]); //create matrix at*a(vector b) i = lh_gold - 1; if(i > size_ext) i = size_ext; imin = -i,imax = i; for(i = imin; i <= imax; i++){ lda = 0; jmin = 0; if(i < 0) jmin = -i; jmax = lh_gold - 1 - i; if(jmax > (lh_gold - 1)) jmax = lh_gold - 1; for(j = jmin;j <= jmax; j++){ ldb = working_space[j]; ldc = working_space[i + j]; lda = lda + ldb * ldc; } working_space[size_ext + i - imin] = lda; } //create vector p i = lh_gold - 1; imin = -i,imax = size_ext + i - 1; for(i = imin; i <= imax; i++){ lda = 0; for(j = 0; j <= (lh_gold - 1); j++){ ldb = working_space[j]; k = i + j; if(k >= 0 && k < size_ext){ ldc = working_space[2 * size_ext + k]; lda = lda + ldb * ldc; } } working_space[4 * size_ext + i - imin] = lda; } //move vector p for(i = imin; i <= imax; i++) working_space[2 * size_ext + i - imin] = working_space[4 * size_ext + i - imin]; //initialization of resulting vector for(i = 0; i < size_ext; i++) working_space[i] = 1; //START OF ITERATIONS for(lindex = 0; lindex < decon_iterations; lindex++){ for(i = 0; i < size_ext; i++){ if(TMath::Abs(working_space[2 * size_ext + i]) > 0.00001 && TMath::Abs(working_space[i]) > 0.00001){ lda=0; jmin = lh_gold - 1; if(jmin > i) jmin = i; jmin = -jmin; jmax = lh_gold - 1; if(jmax > (size_ext - 1 - i)) jmax=size_ext-1-i; for(j = jmin; j <= jmax; j++){ ldb = working_space[j + lh_gold - 1 + size_ext]; ldc = working_space[i + j]; lda = lda + ldb * ldc; } ldb = working_space[2 * size_ext + i]; if(lda != 0) lda = ldb / lda; else lda = 0; ldb = working_space[i]; lda = lda * ldb; working_space[3 * size_ext + i] = lda; } } for(i = 0; i < size_ext; i++){ working_space[i] = working_space[3 * size_ext + i]; } } //shift resulting spectrum for(i=0;i<size_ext;i++){ lda = working_space[i]; j = i + posit; j = j % size_ext; working_space[size_ext + j] = lda; } //write back resulting spectrum maximum = 0, maximum_decon = 0; j = lh_gold - 1; for(i = 0; i < size_ext - j; i++){ working_space[i] = area * working_space[size_ext + i + j]; if(maximum_decon < working_space[i]) maximum_decon = working_space[i]; if(maximum < working_space[6 * size_ext + i]) maximum = working_space[6 * size_ext + i]; } //searching for peaks in deconvolved spectrum for(i = 1; i < size_ext - 1; i++){ if(working_space[i] > working_space[i - 1] && working_space[i] > working_space[i + 1]){ if(i >= shift && i < size + shift){ if(working_space[i] > 0.01*maximum_decon && working_space[6 * size_ext + i] > threshold * maximum / 100.0){ if(peak_index < fMaxPeaks){ for(j = i - 1, a = 0, b = 0; j <= i + 1; j++){ a += (double)(j - shift) * working_space[j]; b += working_space[j]; } a = a / b; if(a < 0) a = 0; if(a >= size) a = size - 1; fPositionX[peak_index] = a; peak_index += 1; } else{ Warning("Search1HighRes", "Peak buffer full"); return 0; } } } } } for(i = 0; i < size; i++) dest[i] = working_space[i + shift]; delete[]working_space; fNPeaks = peak_index; return fNPeaks; } //_____________________________________________________________________________ /////////////////BEGINNING OF AUXILIARY FUNCTIONS USED BY FITTING FUNCION Fit1////////////////////////// double TSpectrum::Erfc(double x) { ////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates error function of x. // // // ////////////////////////////////////////////////////////////////////////////// double da1 = 0.1740121, da2 = -0.0479399, da3 = 0.3739278, dap = 0.47047; double a, t, c, w; a = TMath::Abs(x); w = 1. + dap * a; t = 1. / w; w = a * a; if (w < 700) c = exp(-w); else { c = 0; } c = c * t * (da1 + t * (da2 + t * da3)); if (x < 0) c = 1. - c; return (c); } double TSpectrum::Derfc(double x) { ////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates derivative of error function of x. // // // ////////////////////////////////////////////////////////////////////////////// double a, t, c, w; double da1 = 0.1740121, da2 = -0.0479399, da3 = 0.3739278, dap = 0.47047; a = TMath::Abs(x); w = 1. + dap * a; t = 1. / w; w = a * a; if (w < 700) c = exp(-w); else { c = 0; } c = (-1.) * dap * c * t * t * (da1 + t * (2. * da2 + t * 3. * da3)) - 2. * a * Erfc(a); return (c); } double TSpectrum::Deramp(double i, double i0, double sigma, double t, double s, double b) { ////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates derivative of peak shape function (see manual) // // according to amplitude of peak. // // Function parameters: // // -i-channel // // -i0-position of peak // // -sigma-sigma of peak // // -t, s-relative amplitudes // // -b-slope // // // ////////////////////////////////////////////////////////////////////////////// double p, q, r, a; p = (i - i0) / sigma; if ((p * p) < 700) q = exp(-p * p); else { q = 0; } r = 0; if (t != 0) { a = p / b; if (a > 700) a = 700; r = t * exp(a) / 2.; } if (r != 0) r = r * Erfc(p + 1. / (2. * b)); q = q + r; if (s != 0) q = q + s * Erfc(p) / 2.; return (q); } double TSpectrum::Deri0(double i, double amp, double i0, double sigma, double t, double s, double b) { ////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates derivative of peak shape function (see manual) // // according to peak position. // // Function parameters: // // -i-channel // // -amp-amplitude of peak // // -i0-position of peak // // -sigma-sigma of peak // // -t, s-relative amplitudes // // -b-slope // // // ////////////////////////////////////////////////////////////////////////////// double p, r1, r2, r3, r4, c, d, e; p = (i - i0) / sigma; d = 2. * sigma; if ((p * p) < 700) r1 = 2. * p * exp(-p * p) / sigma; else { r1 = 0; } r2 = 0, r3 = 0; if (t != 0) { c = p + 1. / (2. * b); e = p / b; if (e > 700) e = 700; r2 = -t * exp(e) * Erfc(c) / (d * b); r3 = -t * exp(e) * Derfc(c) / d; } r4 = 0; if (s != 0) r4 = -s * Derfc(p) / d; r1 = amp * (r1 + r2 + r3 + r4); return (r1); } double TSpectrum::Derderi0(double i, double amp, double i0, double sigma) { ////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates second derivative of peak shape function // // (see manual) according to peak position. // // Function parameters: // // -i-channel // // -amp-amplitude of peak // // -i0-position of peak // // -sigma-width of peak // // // ////////////////////////////////////////////////////////////////////////////// double p, r1, r2, r3, r4; p = (i - i0) / sigma; if ((p * p) < 700) r1 = exp(-p * p); else { r1 = 0; } r1 = r1 * (4 * p * p - 2) / (sigma * sigma); r2 = 0, r3 = 0, r4 = 0; r1 = amp * (r1 + r2 + r3 + r4); return (r1); } double TSpectrum::Dersigma(int num_of_fitted_peaks, double i, const double *parameter, double sigma, double t, double s, double b) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates derivative of peaks shape function (see manual) // // according to sigma of peaks. // // Function parameters: // // -num_of_fitted_peaks-number of fitted peaks // // -i-channel // // -parameter-array of peaks parameters (amplitudes and positions) // // -sigma-sigma of peak // // -t, s-relative amplitudes // // -b-slope // // // ////////////////////////////////////////////////////////////////////////////////// int j; double r, p, r1, r2, r3, r4, c, d, e; r = 0; d = 2. * sigma; for (j = 0; j < num_of_fitted_peaks; j++) { p = (i - parameter[2 * j + 1]) / sigma; r1 = 0; if (TMath::Abs(p) < 3) { if ((p * p) < 700) r1 = 2. * p * p * exp(-p * p) / sigma; else { r1 = 0; } } r2 = 0, r3 = 0; if (t != 0) { c = p + 1. / (2. * b); e = p / b; if (e > 700) e = 700; r2 = -t * p * exp(e) * Erfc(c) / (d * b); r3 = -t * p * exp(e) * Derfc(c) / d; } r4 = 0; if (s != 0) r4 = -s * p * Derfc(p) / d; r = r + parameter[2 * j] * (r1 + r2 + r3 + r4); } return (r); } double TSpectrum::Derdersigma(int num_of_fitted_peaks, double i, const double *parameter, double sigma) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates second derivative of peaks shape function // // (see manual) according to sigma of peaks. // // Function parameters: // // -num_of_fitted_peaks-number of fitted peaks // // -i-channel // // -parameter-array of peaks parameters (amplitudes and positions) // // -sigma-sigma of peak // // // ////////////////////////////////////////////////////////////////////////////////// int j; double r, p, r1, r2, r3, r4; r = 0; for (j = 0; j < num_of_fitted_peaks; j++) { p = (i - parameter[2 * j + 1]) / sigma; r1 = 0; if (TMath::Abs(p) < 3) { if ((p * p) < 700) r1 = exp(-p * p) * p * p * (4. * p * p - 6) / (sigma * sigma); else { r1 = 0; } } r2 = 0, r3 = 0, r4 = 0; r = r + parameter[2 * j] * (r1 + r2 + r3 + r4); } return (r); } double TSpectrum::Dert(int num_of_fitted_peaks, double i, const double *parameter, double sigma, double b) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates derivative of peaks shape function (see manual) // // according to relative amplitude t. // // Function parameters: // // -num_of_fitted_peaks-number of fitted peaks // // -i-channel // // -parameter-array of peaks parameters (amplitudes and positions) // // -sigma-sigma of peak // // -b-slope // // // ////////////////////////////////////////////////////////////////////////////////// int j; double r, p, r1, c, e; r = 0; for (j = 0; j < num_of_fitted_peaks; j++) { p = (i - parameter[2 * j + 1]) / sigma; c = p + 1. / (2. * b); e = p / b; if (e > 700) e = 700; r1 = exp(e) * Erfc(c); r = r + parameter[2 * j] * r1; } r = r / 2.; return (r); } double TSpectrum::Ders(int num_of_fitted_peaks, double i, const double *parameter, double sigma) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates derivative of peaks shape function (see manual) // // according to relative amplitude s. // // Function parameters: // // -num_of_fitted_peaks-number of fitted peaks // // -i-channel // // -parameter-array of peaks parameters (amplitudes and positions) // // -sigma-sigma of peak // // // ////////////////////////////////////////////////////////////////////////////////// int j; double r, p, r1; r = 0; for (j = 0; j < num_of_fitted_peaks; j++) { p = (i - parameter[2 * j + 1]) / sigma; r1 = Erfc(p); r = r + parameter[2 * j] * r1; } r = r / 2.; return (r); } double TSpectrum::Derb(int num_of_fitted_peaks, double i, const double *parameter, double sigma, double t, double b) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates derivative of peaks shape function (see manual) // // according to slope b. // // Function parameters: // // -num_of_fitted_peaks-number of fitted peaks // // -i-channel // // -parameter-array of peaks parameters (amplitudes and positions) // // -sigma-sigma of peak // // -t-relative amplitude // // -b-slope // // // ////////////////////////////////////////////////////////////////////////////////// int j; double r, p, r1, c, e; r = 0; for (j = 0; j < num_of_fitted_peaks && t != 0; j++) { p = (i - parameter[2 * j + 1]) / sigma; c = p + 1. / (2. * b); e = p / b; r1 = p * Erfc(c); r1 = r1 + Derfc(c) / 2.; if (e > 700) e = 700; if (e < -700) r1 = 0; else r1 = r1 * exp(e); r = r + parameter[2 * j] * r1; } r = -r * t / (2. * b * b); return (r); } double TSpectrum::Dera1(double i) //derivative of backgroud according to a1 { return (i); } double TSpectrum::Dera2(double i) //derivative of backgroud according to a2 { return (i * i); } double TSpectrum::Shape(int num_of_fitted_peaks, double i, const double *parameter, double sigma, double t, double s, double b, double a0, double a1, double a2) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates peaks shape function (see manual) // // Function parameters: // // -num_of_fitted_peaks-number of fitted peaks // // -i-channel // // -parameter-array of peaks parameters (amplitudes and positions) // // -sigma-sigma of peak // // -t, s-relative amplitudes // // -b-slope // // -a0, a1, a2- background coefficients // // // ////////////////////////////////////////////////////////////////////////////////// int j; double r, p, r1, r2, r3, c, e; r = 0; for (j = 0; j < num_of_fitted_peaks; j++) { if (sigma > 0.0001) p = (i - parameter[2 * j + 1]) / sigma; else { if (i == parameter[2 * j + 1]) p = 0; else p = 10; } r1 = 0; if (TMath::Abs(p) < 3) { if ((p * p) < 700) r1 = exp(-p * p); else { r1 = 0; } } r2 = 0; if (t != 0) { c = p + 1. / (2. * b); e = p / b; if (e > 700) e = 700; r2 = t * exp(e) * Erfc(c) / 2.; } r3 = 0; if (s != 0) r3 = s * Erfc(p) / 2.; r = r + parameter[2 * j] * (r1 + r2 + r3); } r = r + a0 + a1 * i + a2 * i * i; return (r); } double TSpectrum::Area(double a, double sigma, double t, double b) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates area of a peak // // Function parameters: // // -a-amplitude of the peak // // -sigma-sigma of peak // // -t-relative amplitude // // -b-slope // // // ////////////////////////////////////////////////////////////////////////////////// double odm_pi = 1.7724538, r = 0; if (b != 0) r = 0.5 / b; r = (-1.) * r * r; if (TMath::Abs(r) < 700) r = a * sigma * (odm_pi + t * b * exp(r)); else { r = a * sigma * odm_pi; } return (r); } double TSpectrum::Derpa(double sigma, double t, double b) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates derivative of the area of peak // // according to its amplitude. // // Function parameters: // // -sigma-sigma of peak // // -t-relative amplitudes // // -b-slope // // // ////////////////////////////////////////////////////////////////////////////////// double odm_pi = 1.7724538, r; r = 0.5 / b; r = (-1.) * r * r; if (TMath::Abs(r) < 700) r = sigma * (odm_pi + t * b * exp(r)); else { r = sigma * odm_pi; } return (r); } double TSpectrum::Derpsigma(double a, double t, double b) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates derivative of the area of peak // // according to sigma of peaks. // // Function parameters: // // -a-amplitude of peak // // -t-relative amplitudes // // -b-slope // // // ////////////////////////////////////////////////////////////////////////////////// double odm_pi = 1.7724538, r; r = 0.5 / b; r = (-1.) * r * r; if (TMath::Abs(r) < 700) r = a * (odm_pi + t * b * exp(r)); else { r = a * odm_pi; } return (r); } double TSpectrum::Derpt(double a, double sigma, double b) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates derivative of the area of peak // // according to t parameter. // // Function parameters: // // -sigma-sigma of peak // // -t-relative amplitudes // // -b-slope // // // ////////////////////////////////////////////////////////////////////////////////// double r; r = 0.5 / b; r = (-1.) * r * r; if (TMath::Abs(r) < 700) r = a * sigma * b * exp(r); else { r = 0; } return (r); } double TSpectrum::Derpb(double a, double sigma, double t, double b) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates derivative of the area of peak // // according to b parameter. // // Function parameters: // // -sigma-sigma of peak // // -t-relative amplitudes // // -b-slope // // // ////////////////////////////////////////////////////////////////////////////////// double r; r = (-1) * 0.25 / (b * b); if (TMath::Abs(r) < 700) r = a * sigma * t * exp(r) * (1 - 2 * r); else { r = 0; } return (r); } double TSpectrum::Ourpowl(double a, int pw) { //power function double c; c = 1; if (pw > 0) c = c * a * a; else if (pw > 2) c = c * a * a; else if (pw > 4) c = c * a * a; else if (pw > 6) c = c * a * a; else if (pw > 8) c = c * a * a; else if (pw > 10) c = c * a * a; else if (pw > 12) c = c * a * a; return (c); } /////////////////END OF AUXILIARY FUNCTIONS USED BY FITTING FUNCION fit1////////////////////////// /////////////////FITTING FUNCTION WITHOUT MATRIX INVERSION/////////////////////////////////////// const char *TSpectrum::Fit1Awmi(float *source, TSpectrumOneDimFit * p, int size) { ///////////////////////////////////////////////////////////////////////////// /* ONE-DIMENSIONAL FIT FUNCTION */ /* ALGORITHM WITHOUT MATRIX INVERSION */ /* This function fits the source spectrum. The calling program should */ /* fill in input parameters of the TSpectrumOneDimFit class */ /* The fitted parameters are written into class pointed by */ /* TSpectrumOneDimFit class pointer and fitted data are written into */ /* source spectrum. */ /* */ /* Function parameters: */ /* source-pointer to the vector of source spectrum */ /* p-pointer to the TSpectrumOneDimFit class, see manual */ /* size-length of source spectrum */ /* */ ///////////////////////////////////////////////////////////////////////////// int i, j, k, shift = 2 * p->fNumberPeaks + 7, peak_vel, rozmer, iter, pw, regul_cycle, flag; double a, b, c, d = 0, alpha, chi_opt, yw, ywm, f, chi2, chi_min, chi = 0, pi, pmin = 0, chi_cel = 0, chi_er; if (size <= 0) return "Wrong Parameters"; if (p->fNumberPeaks <= 0) return ("INVALID NUMBER OF PEAKS, MUST BE POSITIVE"); if (p->fNumberIterations <= 0) return ("INVALID NUMBER OF ITERATIONS, MUST BE POSITIVE"); if (p->fAlpha <= 0 || p->fAlpha > 1) return ("INVALID COEFFICIENT ALPHA, MUST BE > THAN 0 AND <=1"); if (p->fStatisticType != kFitOptimChiCounts && p->fStatisticType != kFitOptimChiFuncValues && p->fStatisticType != kFitOptimMaxLikelihood) return ("WRONG TYPE OF STATISTIC"); if (p->fAlphaOptim != kFitAlphaHalving && p->fAlphaOptim != kFitAlphaOptimal) return ("WRONG OPTIMIZATION ALGORITHM"); if (p->fPower != kFitPower2 && p->fPower != kFitPower4 && p->fPower != kFitPower6 && p->fPower != kFitPower8 && p->fPower != kFitPower10 && p->fPower != kFitPower12) return ("WRONG POWER"); if (p->fFitTaylor != kFitTaylorOrderFirst && p->fFitTaylor != kFitTaylorOrderSecond) return ("WRONG ORDER OF TAYLOR DEVELOPMENT"); if (p->fXmin < 0 || p->fXmin > p->fXmax) return ("INVALID LOW LIMIT OF FITTING REGION"); if (p->fXmax >= size || p->fXmax < p->fXmin) return ("INVALID HIGH LIMIT OF FITTING REGION"); double *working_space = new double[5 * (2 * p->fNumberPeaks + 7)]; for (i = 0, j = 0; i < p->fNumberPeaks; i++) { if (p->fAmpInit[i] < 0) return ("INITIAL VALUE OF AMPLITUDE MUST BE NONNEGATIVE"); working_space[2 * i] = p->fAmpInit[i]; //vector parameter if (p->fFixAmp[i] == false) { working_space[shift + j] = p->fAmpInit[i]; //vector xk j += 1; } if (p->fPositionInit[i] < p->fXmin) return ("INITIAL VALUE OF POSITION MUST BE WITHIN FITTING REGION"); if (p->fPositionInit[i] > p->fXmax) return ("INITIAL VALUE OF POSITION MUST BE WITHIN FITTING REGION"); working_space[2 * i + 1] = p->fPositionInit[i]; //vector parameter if (p->fFixPosition[i] == false) { working_space[shift + j] = p->fPositionInit[i]; //vector xk j += 1; } } peak_vel = 2 * i; if (p->fSigmaInit < 0) return ("INITIAL VALUE OF SIGMA MUST BE NONNEGATIVE"); working_space[2 * i] = p->fSigmaInit; //vector parameter if (p->fFixSigma == false) { working_space[shift + j] = p->fSigmaInit; //vector xk j += 1; } if (p->fTInit < 0) return ("INITIAL VALUE OF T MUST BE NONNEGATIVE"); working_space[2 * i + 1] = p->fTInit; //vector parameter if (p->fFixT == false) { working_space[shift + j] = p->fTInit; //vector xk j += 1; } if (p->fBInit <= 0) return ("INITIAL VALUE OF B MUST BE POSITIVE"); working_space[2 * i + 2] = p->fBInit; //vector parameter if (p->fFixB == false) { working_space[shift + j] = p->fBInit; //vector xk j += 1; } if (p->fSInit < 0) return ("INITIAL VALUE OF S MUST BE NONNEGATIVE"); working_space[2 * i + 3] = p->fSInit; //vector parameter if (p->fFixS == false) { working_space[shift + j] = p->fSInit; //vector xk j += 1; } working_space[2 * i + 4] = p->fA0Init; //vector parameter if (p->fFixA0 == false) { working_space[shift + j] = p->fA0Init; //vector xk j += 1; } working_space[2 * i + 5] = p->fA1Init; //vector parameter if (p->fFixA1 == false) { working_space[shift + j] = p->fA1Init; //vector xk j += 1; } working_space[2 * i + 6] = p->fA2Init; //vector parameter if (p->fFixA2 == false) { working_space[shift + j] = p->fA2Init; //vector xk j += 1; } rozmer = j; if (rozmer == 0) return ("ALL PARAMETERS ARE FIXED"); if (rozmer >= p->fXmax - p->fXmin + 1) return ("NUMBER OF FITTED PARAMETERS IS LARGER THAN # OF FITTED POINTS"); for (iter = 0; iter < p->fNumberIterations; iter++) { for (j = 0; j < rozmer; j++) { working_space[2 * shift + j] = 0, working_space[3 * shift + j] = 0; //der,temp } //filling vectors alpha = p->fAlpha; chi_opt = 0, pw = p->fPower - 2; for (i = p->fXmin; i <= p->fXmax; i++) { yw = source[i]; ywm = yw; f = Shape(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2], working_space[peak_vel + 4], working_space[peak_vel + 5], working_space[peak_vel + 6]); if (p->fStatisticType == kFitOptimMaxLikelihood) { if (f > 0.00001) chi_opt += yw * TMath::Log(f) - f; } else { if (ywm != 0) chi_opt += (yw - f) * (yw - f) / ywm; } if (p->fStatisticType == kFitOptimChiFuncValues) { ywm = f; if (f < 0.00001) ywm = 0.00001; } else if (p->fStatisticType == kFitOptimMaxLikelihood) { ywm = f; if (f < 0.001) ywm = 0.001; } else { if (ywm == 0) ywm = 1; } //calculation of gradient vector for (j = 0, k = 0; j < p->fNumberPeaks; j++) { if (p->fFixAmp[j] == false) { a = Deramp((double) i, working_space[2 * j + 1], working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); if (ywm != 0) { c = Ourpowl(a, pw); if (p->fStatisticType == kFitOptimChiFuncValues) { b = a * (yw * yw - f * f) / (ywm * ywm); working_space[2 * shift + k] += b * c; //der b = a * a * (4 * yw - 2 * f) / (ywm * ywm); working_space[3 * shift + k] += b * c; //temp } else { b = a * (yw - f) / ywm; working_space[2 * shift + k] += b * c; //der b = a * a / ywm; working_space[3 * shift + k] += b * c; //temp } } k += 1; } if (p->fFixPosition[j] == false) { a = Deri0((double) i, working_space[2 * j], working_space[2 * j + 1], working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); if (p->fFitTaylor == kFitTaylorOrderSecond) d = Derderi0((double) i, working_space[2 * j], working_space[2 * j + 1], working_space[peak_vel]); if (ywm != 0) { c = Ourpowl(a, pw); if (TMath::Abs(a) > 0.00000001 && p->fFitTaylor == kFitTaylorOrderSecond) { d = d * TMath::Abs(yw - f) / (2 * a * ywm); if ((a + d) <= 0 && a >= 0 || (a + d) >= 0 && a <= 0) d = 0; } else d = 0; a = a + d; if (p->fStatisticType == kFitOptimChiFuncValues) { b = a * (yw * yw - f * f) / (ywm * ywm); working_space[2 * shift + k] += b * c; //der b = a * a * (4 * yw - 2 * f) / (ywm * ywm); working_space[3 * shift + k] += b * c; //temp } else { b = a * (yw - f) / ywm; working_space[2 * shift + k] += b * c; //der b = a * a / ywm; working_space[3 * shift + k] += b * c; //temp } } k += 1; } } if (p->fFixSigma == false) { a = Dersigma(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); if (p->fFitTaylor == kFitTaylorOrderSecond) d = Derdersigma(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel]); if (ywm != 0) { c = Ourpowl(a, pw); if (TMath::Abs(a) > 0.00000001 && p->fFitTaylor == kFitTaylorOrderSecond) { d = d * TMath::Abs(yw - f) / (2 * a * ywm); if ((a + d) <= 0 && a >= 0 || (a + d) >= 0 && a <= 0) d = 0; } else d = 0; a = a + d; if (p->fStatisticType == kFitOptimChiFuncValues) { b = a * (yw * yw - f * f) / (ywm * ywm); working_space[2 * shift + k] += b * c; //der b = a * a * (4 * yw - 2 * f) / (ywm * ywm); working_space[3 * shift + k] += b * c; //temp } else { b = a * (yw - f) / ywm; working_space[2 * shift + k] += b * c; //der b = a * a / ywm; working_space[3 * shift + k] += b * c; //temp } } k += 1; } if (p->fFixT == false) { a = Dert(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 2]); if (ywm != 0) { c = Ourpowl(a, pw); if (p->fStatisticType == kFitOptimChiFuncValues) { b = a * (yw * yw - f * f) / (ywm * ywm); working_space[2 * shift + k] += b * c; //der b = a * a * (4 * yw - 2 * f) / (ywm * ywm); working_space[3 * shift + k] += b * c; //temp } else { b = a * (yw - f) / ywm; working_space[2 * shift + k] += b * c; //der b = a * a / ywm; working_space[3 * shift + k] += b * c; //temp } } k += 1; } if (p->fFixB == false) { a = Derb(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 2]); if (ywm != 0) { c = Ourpowl(a, pw); if (p->fStatisticType == kFitOptimChiFuncValues) { b = a * (yw * yw - f * f) / (ywm * ywm); working_space[2 * shift + k] += b * c; //der b = a * a * (4 * yw - 2 * f) / (ywm * ywm); working_space[3 * shift + k] += b * c; //temp } else { b = a * (yw - f) / ywm; working_space[2 * shift + k] += b * c; //der b = a * a / ywm; working_space[3 * shift + k] += b * c; //temp } } k += 1; } if (p->fFixS == false) { a = Ders(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel]); if (ywm != 0) { c = Ourpowl(a, pw); if (p->fStatisticType == kFitOptimChiFuncValues) { b = a * (yw * yw - f * f) / (ywm * ywm); working_space[2 * shift + k] += b * c; //der b = a * a * (4 * yw - 2 * f) / (ywm * ywm); working_space[3 * shift + k] += b * c; //temp } else { b = a * (yw - f) / ywm; working_space[2 * shift + k] += b * c; //der b = a * a / ywm; working_space[3 * shift + k] += b * c; //temp } } k += 1; } if (p->fFixA0 == false) { a = 1.; if (ywm != 0) { c = Ourpowl(a, pw); if (p->fStatisticType == kFitOptimChiFuncValues) { b = a * (yw * yw - f * f) / (ywm * ywm); working_space[2 * shift + k] += b * c; //der b = a * a * (4 * yw - 2 * f) / (ywm * ywm); working_space[3 * shift + k] += b * c; //temp } else { b = a * (yw - f) / ywm; working_space[2 * shift + k] += b * c; //der b = a * a / ywm; working_space[3 * shift + k] += b * c; //temp } } k += 1; } if (p->fFixA1 == false) { a = Dera1((double) i); if (ywm != 0) { c = Ourpowl(a, pw); if (p->fStatisticType == kFitOptimChiFuncValues) { b = a * (yw * yw - f * f) / (ywm * ywm); working_space[2 * shift + k] += b * c; //der b = a * a * (4 * yw - 2 * f) / (ywm * ywm); working_space[3 * shift + k] += b * c; //temp } else { b = a * (yw - f) / ywm; working_space[2 * shift + k] += b * c; //der b = a * a / ywm; working_space[3 * shift + k] += b * c; //temp } } k += 1; } if (p->fFixA2 == false) { a = Dera2((double) i); if (ywm != 0) { c = Ourpowl(a, pw); if (p->fStatisticType == kFitOptimChiFuncValues) { b = a * (yw * yw - f * f) / (ywm * ywm); working_space[2 * shift + k] += b * c; //der b = a * a * (4 * yw - 2 * f) / (ywm * ywm); working_space[3 * shift + k] += b * c; //temp } else { b = a * (yw - f) / ywm; working_space[2 * shift + k] += b * c; //der b = a * a / ywm; working_space[3 * shift + k] += b * c; //temp } } k += 1; } } for (j = 0; j < rozmer; j++) { if (TMath::Abs(working_space[3 * shift + j]) > 0.000001) working_space[2 * shift + j] = working_space[2 * shift + j] / TMath::Abs(working_space[3 * shift + j]); //der[j]=der[j]/temp[j] else working_space[2 * shift + j] = 0; //der[j] } //calculate chi_opt chi2 = chi_opt; chi_opt = TMath::Sqrt(TMath::Abs(chi_opt)); //calculate new parameters regul_cycle = 0; for (j = 0; j < rozmer; j++) { working_space[4 * shift + j] = working_space[shift + j]; //temp_xk[j]=xk[j] } do { if (p->fAlphaOptim == kFitAlphaOptimal) { if (p->fStatisticType != kFitOptimMaxLikelihood) chi_min = 10000 * chi2; else chi_min = 0.1 * chi2; flag = 0; for (pi = 0.1; flag == 0 && pi <= 100; pi += 0.1) { for (j = 0; j < rozmer; j++) { working_space[shift + j] = working_space[4 * shift + j] + pi * alpha * working_space[2 * shift + j]; //xk[j]=temp_xk[j]+pi*alpha*der[j] } for (i = 0, j = 0; i < p->fNumberPeaks; i++) { if (p->fFixAmp[i] == false) { if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = 0; //xk[j] working_space[2 * i] = working_space[shift + j]; //parameter[2*i]=xk[j] j += 1; } if (p->fFixPosition[i] == false) { if (working_space[shift + j] < p->fXmin) //xk[j] working_space[shift + j] = p->fXmin; //xk[j] if (working_space[shift + j] > p->fXmax) //xk[j] working_space[shift + j] = p->fXmax; //xk[j] working_space[2 * i + 1] = working_space[shift + j]; //parameter[2*i+1]=xk[j] j += 1; } } if (p->fFixSigma == false) { if (working_space[shift + j] < 0.001) { //xk[j] working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel] = working_space[shift + j]; //parameter[peak_vel]=xk[j] j += 1; } if (p->fFixT == false) { working_space[peak_vel + 1] = working_space[shift + j]; //parameter[peak_vel+1]=xk[j] j += 1; } if (p->fFixB == false) { if (TMath::Abs(working_space[shift + j]) < 0.001) { //xk[j] if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = -0.001; //xk[j] else working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel + 2] = working_space[shift + j]; //parameter[peak_vel+2]=xk[j] j += 1; } if (p->fFixS == false) { working_space[peak_vel + 3] = working_space[shift + j]; //parameter[peak_vel+3]=xk[j] j += 1; } if (p->fFixA0 == false) { working_space[peak_vel + 4] = working_space[shift + j]; //parameter[peak_vel+4]=xk[j] j += 1; } if (p->fFixA1 == false) { working_space[peak_vel + 5] = working_space[shift + j]; //parameter[peak_vel+5]=xk[j] j += 1; } if (p->fFixA2 == false) { working_space[peak_vel + 6] = working_space[shift + j]; //parameter[peak_vel+6]=xk[j] j += 1; } chi2 = 0; for (i = p->fXmin; i <= p->fXmax; i++) { yw = source[i]; ywm = yw; f = Shape(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2], working_space[peak_vel + 4], working_space[peak_vel + 5], working_space[peak_vel + 6]); if (p->fStatisticType == kFitOptimChiFuncValues) { ywm = f; if (f < 0.00001) ywm = 0.00001; } if (p->fStatisticType == kFitOptimMaxLikelihood) { if (f > 0.00001) chi2 += yw * TMath::Log(f) - f; } else { if (ywm != 0) chi2 += (yw - f) * (yw - f) / ywm; } } if (chi2 < chi_min && p->fStatisticType != kFitOptimMaxLikelihood || chi2 > chi_min && p->fStatisticType == kFitOptimMaxLikelihood) { pmin = pi, chi_min = chi2; } else flag = 1; if (pi == 0.1) chi_min = chi2; chi = chi_min; } if (pmin != 0.1) { for (j = 0; j < rozmer; j++) { working_space[shift + j] = working_space[4 * shift + j] + pmin * alpha * working_space[2 * shift + j]; //xk[j]=temp_xk[j]+pmin*alpha*der[j] } for (i = 0, j = 0; i < p->fNumberPeaks; i++) { if (p->fFixAmp[i] == false) { if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = 0; //xk[j] working_space[2 * i] = working_space[shift + j]; //parameter[2*i]=xk[j] j += 1; } if (p->fFixPosition[i] == false) { if (working_space[shift + j] < p->fXmin) //xk[j] working_space[shift + j] = p->fXmin; //xk[j] if (working_space[shift + j] > p->fXmax) //xk[j] working_space[shift + j] = p->fXmax; //xk[j] working_space[2 * i + 1] = working_space[shift + j]; //parameter[2*i+1]=xk[j] j += 1; } } if (p->fFixSigma == false) { if (working_space[shift + j] < 0.001) { //xk[j] working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel] = working_space[shift + j]; //parameter[peak_vel]=xk[j] j += 1; } if (p->fFixT == false) { working_space[peak_vel + 1] = working_space[shift + j]; //parameter[peak_vel+1]=xk[j] j += 1; } if (p->fFixB == false) { if (TMath::Abs(working_space[shift + j]) < 0.001) { //xk[j] if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = -0.001; //xk[j] else working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel + 2] = working_space[shift + j]; //parameter[peak_vel+2]=xk[j] j += 1; } if (p->fFixS == false) { working_space[peak_vel + 3] = working_space[shift + j]; //parameter[peak_vel+3]=xk[j] j += 1; } if (p->fFixA0 == false) { working_space[peak_vel + 4] = working_space[shift + j]; //parameter[peak_vel+4]=xk[j] j += 1; } if (p->fFixA1 == false) { working_space[peak_vel + 5] = working_space[shift + j]; //parameter[peak_vel+5]=xk[j] j += 1; } if (p->fFixA2 == false) { working_space[peak_vel + 6] = working_space[shift + j]; //parameter[peak_vel+6]=xk[j] j += 1; } chi = chi_min; } } else { for (j = 0; j < rozmer; j++) { working_space[shift + j] = working_space[4 * shift + j] + alpha * working_space[2 * shift + j]; //xk[j]=temp_xk[j]+pi*alpha*der[j] } for (i = 0, j = 0; i < p->fNumberPeaks; i++) { if (p->fFixAmp[i] == false) { if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = 0; //xk[j] working_space[2 * i] = working_space[shift + j]; //parameter[2*i]=xk[j] j += 1; } if (p->fFixPosition[i] == false) { if (working_space[shift + j] < p->fXmin) //xk[j] working_space[shift + j] = p->fXmin; //xk[j] if (working_space[shift + j] > p->fXmax) //xk[j] working_space[shift + j] = p->fXmax; //xk[j] working_space[2 * i + 1] = working_space[shift + j]; //parameter[2*i+1]=xk[j] j += 1; } } if (p->fFixSigma == false) { if (working_space[shift + j] < 0.001) { //xk[j] working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel] = working_space[shift + j]; //parameter[peak_vel]=xk[j] j += 1; } if (p->fFixT == false) { working_space[peak_vel + 1] = working_space[shift + j]; //parameter[peak_vel+1]=xk[j] j += 1; } if (p->fFixB == false) { if (TMath::Abs(working_space[shift + j]) < 0.001) { //xk[j] if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = -0.001; //xk[j] else working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel + 2] = working_space[shift + j]; //parameter[peak_vel+2]=xk[j] j += 1; } if (p->fFixS == false) { working_space[peak_vel + 3] = working_space[shift + j]; //parameter[peak_vel+3]=xk[j] j += 1; } if (p->fFixA0 == false) { working_space[peak_vel + 4] = working_space[shift + j]; //parameter[peak_vel+4]=xk[j] j += 1; } if (p->fFixA1 == false) { working_space[peak_vel + 5] = working_space[shift + j]; //parameter[peak_vel+5]=xk[j] j += 1; } if (p->fFixA2 == false) { working_space[peak_vel + 6] = working_space[shift + j]; //parameter[peak_vel+6]=xk[j] j += 1; } chi = 0; for (i = p->fXmin; i <= p->fXmax; i++) { yw = source[i]; ywm = yw; f = Shape(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2], working_space[peak_vel + 4], working_space[peak_vel + 5], working_space[peak_vel + 6]); if (p->fStatisticType == kFitOptimChiFuncValues) { ywm = f; if (f < 0.00001) ywm = 0.00001; } if (p->fStatisticType == kFitOptimMaxLikelihood) { if (f > 0.00001) chi += yw * TMath::Log(f) - f; } else { if (ywm != 0) chi += (yw - f) * (yw - f) / ywm; } } } chi2 = chi; chi = TMath::Sqrt(TMath::Abs(chi)); if (p->fAlphaOptim == kFitAlphaHalving && chi > 1E-6) alpha = alpha * chi_opt / (2 * chi); else if (p->fAlphaOptim == kFitAlphaOptimal) alpha = alpha / 10.0; iter += 1; regul_cycle += 1; } while ((chi > chi_opt && p->fStatisticType != kFitOptimMaxLikelihood || chi < chi_opt && p->fStatisticType == kFitOptimMaxLikelihood) && regul_cycle < kFitNumRegulCycles); for (j = 0; j < rozmer; j++) { working_space[4 * shift + j] = 0; //temp_xk[j] working_space[2 * shift + j] = 0; //der[j] } for (i = p->fXmin, chi_cel = 0; i <= p->fXmax; i++) { yw = source[i]; if (yw == 0) yw = 1; f = Shape(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2], working_space[peak_vel + 4], working_space[peak_vel + 5], working_space[peak_vel + 6]); chi_opt = (yw - f) * (yw - f) / yw; chi_cel += (yw - f) * (yw - f) / yw; //calculate gradient vector for (j = 0, k = 0; j < p->fNumberPeaks; j++) { if (p->fFixAmp[j] == false) { a = Deramp((double) i, working_space[2 * j + 1], working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); if (yw != 0) { c = Ourpowl(a, pw); working_space[2 * shift + k] += chi_opt * c; //der[k] b = a * a / yw; working_space[4 * shift + k] += b * c; //temp_xk[k] } k += 1; } if (p->fFixPosition[j] == false) { a = Deri0((double) i, working_space[2 * j], working_space[2 * j + 1], working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); if (yw != 0) { c = Ourpowl(a, pw); working_space[2 * shift + k] += chi_opt * c; //der[k] b = a * a / yw; working_space[4 * shift + k] += b * c; //temp_xk[k] } k += 1; } } if (p->fFixSigma == false) { a = Dersigma(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); if (yw != 0) { c = Ourpowl(a, pw); working_space[2 * shift + k] += chi_opt * c; //der[k] b = a * a / yw; working_space[4 * shift + k] += b * c; //temp_xk[k] } k += 1; } if (p->fFixT == false) { a = Dert(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 2]); if (yw != 0) { c = Ourpowl(a, pw); working_space[2 * shift + k] += chi_opt * c; //der[k] b = a * a / yw; working_space[4 * shift + k] += b * c; //temp_xk[k] } k += 1; } if (p->fFixB == false) { a = Derb(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 2]); if (yw != 0) { c = Ourpowl(a, pw); working_space[2 * shift + k] += chi_opt * c; //der[k] b = a * a / yw; working_space[4 * shift + k] += b * c; //temp_xk[k] } k += 1; } if (p->fFixS == false) { a = Ders(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel]); if (yw != 0) { c = Ourpowl(a, pw); working_space[2 * shift + k] += chi_opt * c; //der[k] b = a * a / yw; working_space[4 * shift + k] += b * c; //tem_xk[k] } k += 1; } if (p->fFixA0 == false) { a = 1.0; if (yw != 0) { c = Ourpowl(a, pw); working_space[2 * shift + k] += chi_opt * c; //der[k] b = a * a / yw; working_space[4 * shift + k] += b * c; //temp_xk[k] } k += 1; } if (p->fFixA1 == false) { a = Dera1((double) i); if (yw != 0) { c = Ourpowl(a, pw); working_space[2 * shift + k] += chi_opt * c; //der[k] b = a * a / yw; working_space[4 * shift + k] += b * c; //temp_xk[k] } k += 1; } if (p->fFixA2 == false) { a = Dera2((double) i); if (yw != 0) { c = Ourpowl(a, pw); working_space[2 * shift + k] += chi_opt * c; //der[k] b = a * a / yw; working_space[4 * shift + k] += b * c; //temp_xk[k] } k += 1; } } } b = p->fXmax - p->fXmin + 1 - rozmer; chi_er = chi_cel / b; for (i = 0, j = 0; i < p->fNumberPeaks; i++) { p->fArea[i] = Area(working_space[2 * i], working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 2]); if (p->fFixAmp[i] == false) { p->fAmpCalc[i] = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) p->fAmpErr[i] = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] if (p->fArea[i] > 0) { a = Derpa(working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 2]); b = working_space[4 * shift + j]; //temp_xk[j] if (b == 0) b = 1; else b = 1 / b; p->fAreaErr[i] = TMath::Sqrt(TMath::Abs(a * a * b * chi_er)); } else p->fAreaErr[i] = 0; j += 1; } else { p->fAmpCalc[i] = p->fAmpInit[i]; p->fAmpErr[i] = 0; p->fAreaErr[i] = 0; } if (p->fFixPosition[i] == false) { p->fPositionCalc[i] = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fPositionErr[i] = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fPositionCalc[i] = p->fPositionInit[i]; p->fPositionErr[i] = 0; } } if (p->fFixSigma == false) { p->fSigmaCalc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fSigmaErr = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fSigmaCalc = p->fSigmaInit; p->fSigmaErr = 0; } if (p->fFixT == false) { p->fTCalc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fTErr = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fTCalc = p->fTInit; p->fTErr = 0; } if (p->fFixB == false) { p->fBCalc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fBErr = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fBCalc = p->fBInit; p->fBErr = 0; } if (p->fFixS == false) { p->fSCalc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fSErr = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fSCalc = p->fSInit; p->fSErr = 0; } if (p->fFixA0 == false) { p->fA0Calc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fA0Err = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fA0Calc = p->fA0Init; p->fA0Err = 0; } if (p->fFixA1 == false) { p->fA1Calc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fA1Err = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fA1Calc = p->fA1Init; p->fA1Err = 0; } if (p->fFixA2 == false) { p->fA2Calc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fA2Err = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fA2Calc = p->fA2Init; p->fA2Err = 0; } b = p->fXmax - p->fXmin + 1 - rozmer; p->fChi = chi_cel / b; for (i = p->fXmin; i <= p->fXmax; i++) { f = Shape(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2], working_space[peak_vel + 4], working_space[peak_vel + 5], working_space[peak_vel + 6]); source[i] = f; } delete[]working_space; return 0; } //_______________________________________________________________________________ /////////////////FITTING FUNCTION WITH MATRIX INVERSION/////////////////////////////////////// void TSpectrum::StiefelInversion(double **a, int size) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates solution of the system of linear equations. // // The matrix a should have a dimension size*(size+4) // // The calling function should fill in the matrix, the column size should // // contain vector y (right side of the system of equations). The result is // // placed into size+1 column of the matrix. // // according to sigma of peaks. // // Function parameters: // // -a-matrix with dimension size*(size+4) // // // -size-number of rows of the matrix // // // ////////////////////////////////////////////////////////////////////////////////// int i, j, k = 0; double sk = 0, b, lambdak, normk, normk_old = 0; do { normk = 0; //calculation of rk and norm for (i = 0; i < size; i++) { a[i][size + 2] = -a[i][size]; //rk=-C for (j = 0; j < size; j++) { a[i][size + 2] += a[i][j] * a[j][size + 1]; //A*xk-C } normk += a[i][size + 2] * a[i][size + 2]; //calculation normk } //calculation of sk if (k != 0) { sk = normk / normk_old; } //calculation of uk for (i = 0; i < size; i++) { a[i][size + 3] = -a[i][size + 2] + sk * a[i][size + 3]; //uk=-rk+sk*uk-1 } //calculation of lambdak lambdak = 0; for (i = 0; i < size; i++) { for (j = 0, b = 0; j < size; j++) { b += a[i][j] * a[j][size + 3]; //A*uk } lambdak += b * a[i][size + 3]; } if (TMath::Abs(lambdak) > 1e-50) //computer zero lambdak = normk / lambdak; else lambdak = 0; for (i = 0; i < size; i++) a[i][size + 1] += lambdak * a[i][size + 3]; //xk+1=xk+lambdak*uk normk_old = normk; k += 1; } while (k < size && TMath::Abs(normk) > 1e-50); //computer zero return; } const char *TSpectrum::Fit1Stiefel(float *source, TSpectrumOneDimFit * p, int size) { ///////////////////////////////////////////////////////////////////////////// /* ONE-DIMENSIONAL FIT FUNCTION */ /* ALGORITHM WITH MATRIX INVERSION (STIEFEL-HESTENS METHOD) */ /* This function fits the source spectrum. The calling program should */ /* fill in input parameters of the TSpectrumOneDimFit class */ /* The fitted parameters are written into class pointed by */ /* TSpectrumOneDimFit class pointer and fitted data are written into */ /* source spectrum. */ /* */ /* Function parameters: */ /* source-pointer to the vector of source spectrum */ /* p-pointer to the TSpectrumOneDimFit class, see manual */ /* size-length of source spectrum */ /* */ ///////////////////////////////////////////////////////////////////////////// int i, j, k, shift = 2 * p->fNumberPeaks + 7, peak_vel, rozmer, iter, regul_cycle, flag; double a, b, alpha, chi_opt, yw, ywm, f, chi2, chi_min, chi = 0, pi, pmin = 0, chi_cel = 0, chi_er; if (size <= 0) return "Wrong Parameters"; if (p->fNumberPeaks <= 0) return ("INVALID NUMBER OF PEAKS, MUST BE POSITIVE"); if (p->fNumberIterations <= 0) return ("INVALID NUMBER OF ITERATIONS, MUST BE POSITIVE"); if (p->fAlpha <= 0 || p->fAlpha > 1) return ("INVALID COEFFICIENT ALPHA, MUST BE > THAN 0 AND <=1"); if (p->fStatisticType != kFitOptimChiCounts && p->fStatisticType != kFitOptimChiFuncValues && p->fStatisticType != kFitOptimMaxLikelihood) return ("WRONG TYPE OF STATISTIC"); if (p->fAlphaOptim != kFitAlphaHalving && p->fAlphaOptim != kFitAlphaOptimal) return ("WRONG OPTIMIZATION ALGORITHM"); if (p->fXmin < 0 || p->fXmin > p->fXmax) return ("INVALID LOW LIMIT OF FITTING REGION"); if (p->fXmax >= size || p->fXmax < p->fXmin) return ("INVALID HIGH LIMIT OF FITTING REGION"); double *working_space = new double[5 * (2 * p->fNumberPeaks + 7)]; for (i = 0, j = 0; i < p->fNumberPeaks; i++) { if (p->fAmpInit[i] < 0) return ("INITIAL VALUE OF AMPLITUDE MUST BE NONNEGATIVE"); working_space[2 * i] = p->fAmpInit[i]; //vector parameter if (p->fFixAmp[i] == false) { working_space[shift + j] = p->fAmpInit[i]; //vector xk j += 1; } if (p->fPositionInit[i] < p->fXmin) return ("INITIAL VALUE OF POSITION MUST BE WITHIN FITTING REGION"); if (p->fPositionInit[i] > p->fXmax) return ("INITIAL VALUE OF POSITION MUST BE WITHIN FITTING REGION"); working_space[2 * i + 1] = p->fPositionInit[i]; //vector parameter if (p->fFixPosition[i] == false) { working_space[shift + j] = p->fPositionInit[i]; //vector xk j += 1; } } peak_vel = 2 * i; if (p->fSigmaInit < 0) return ("INITIAL VALUE OF SIGMA MUST BE NONNEGATIVE"); working_space[2 * i] = p->fSigmaInit; //vector parameter if (p->fFixSigma == false) { working_space[shift + j] = p->fSigmaInit; //vector xk j += 1; } if (p->fTInit < 0) return ("INITIAL VALUE OF T MUST BE NONNEGATIVE"); working_space[2 * i + 1] = p->fTInit; //vector parameter if (p->fFixT == false) { working_space[shift + j] = p->fTInit; //vector xk j += 1; } if (p->fBInit <= 0) return ("INITIAL VALUE OF B MUST BE POSITIVE"); working_space[2 * i + 2] = p->fBInit; //vector parameter if (p->fFixB == false) { working_space[shift + j] = p->fBInit; //vector xk j += 1; } if (p->fSInit < 0) return ("INITIAL VALUE OF S MUST BE NONNEGATIVE"); working_space[2 * i + 3] = p->fSInit; //vector parameter if (p->fFixS == false) { working_space[shift + j] = p->fSInit; //vector xk j += 1; } working_space[2 * i + 4] = p->fA0Init; //vector parameter if (p->fFixA0 == false) { working_space[shift + j] = p->fA0Init; //vector xk j += 1; } working_space[2 * i + 5] = p->fA1Init; //vector parameter if (p->fFixA1 == false) { working_space[shift + j] = p->fA1Init; //vector xk j += 1; } working_space[2 * i + 6] = p->fA2Init; //vector parameter if (p->fFixA2 == false) { working_space[shift + j] = p->fA2Init; //vector xk j += 1; } rozmer = j; if (rozmer == 0) return ("ALL PARAMETERS ARE FIXED"); if (rozmer >= p->fXmax - p->fXmin + 1) return ("NUMBER OF FITTED PARAMETERS IS LARGER THAN # OF FITTED POINTS"); double **working_matrix = new double *[rozmer]; for (i = 0; i < rozmer; i++) working_matrix[i] = new double[rozmer + 4]; for (iter = 0; iter < p->fNumberIterations; iter++) { for (j = 0; j < rozmer; j++) { working_space[3 * shift + j] = 0; //temp for (k = 0; k <= rozmer; k++) { working_matrix[j][k] = 0; } } //filling working matrix alpha = p->fAlpha; chi_opt = 0; for (i = p->fXmin; i <= p->fXmax; i++) { //calculation of gradient vector for (j = 0, k = 0; j < p->fNumberPeaks; j++) { if (p->fFixAmp[j] == false) { working_space[2 * shift + k] = Deramp((double) i, working_space[2 * j + 1], working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); k += 1; } if (p->fFixPosition[j] == false) { working_space[2 * shift + k] = Deri0((double) i, working_space[2 * j], working_space[2 * j + 1], working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); k += 1; } } if (p->fFixSigma == false) { working_space[2 * shift + k] = Dersigma(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); k += 1; } if (p->fFixT == false) { working_space[2 * shift + k] = Dert(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 2]); k += 1; } if (p->fFixB == false) { working_space[2 * shift + k] = Derb(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 2]); k += 1; } if (p->fFixS == false) { working_space[2 * shift + k] = Ders(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel]); k += 1; } if (p->fFixA0 == false) { working_space[2 * shift + k] = 1.; k += 1; } if (p->fFixA1 == false) { working_space[2 * shift + k] = Dera1((double) i); k += 1; } if (p->fFixA2 == false) { working_space[2 * shift + k] = Dera2((double) i); k += 1; } yw = source[i]; ywm = yw; f = Shape(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2], working_space[peak_vel + 4], working_space[peak_vel + 5], working_space[peak_vel + 6]); if (p->fStatisticType == kFitOptimMaxLikelihood) { if (f > 0.00001) chi_opt += yw * TMath::Log(f) - f; } else { if (ywm != 0) chi_opt += (yw - f) * (yw - f) / ywm; } if (p->fStatisticType == kFitOptimChiFuncValues) { ywm = f; if (f < 0.00001) ywm = 0.00001; } else if (p->fStatisticType == kFitOptimMaxLikelihood) { ywm = f; if (f < 0.00001) ywm = 0.00001; } else { if (ywm == 0) ywm = 1; } for (j = 0; j < rozmer; j++) { for (k = 0; k < rozmer; k++) { b = working_space[2 * shift + j] * working_space[2 * shift + k] / ywm; if (p->fStatisticType == kFitOptimChiFuncValues) b = b * (4 * yw - 2 * f) / ywm; working_matrix[j][k] += b; if (j == k) working_space[3 * shift + j] += b; } } if (p->fStatisticType == kFitOptimChiFuncValues) b = (f * f - yw * yw) / (ywm * ywm); else b = (f - yw) / ywm; for (j = 0; j < rozmer; j++) { working_matrix[j][rozmer] -= b * working_space[2 * shift + j]; } } for (i = 0; i < rozmer; i++) { working_matrix[i][rozmer + 1] = 0; //xk } StiefelInversion(working_matrix, rozmer); for (i = 0; i < rozmer; i++) { working_space[2 * shift + i] = working_matrix[i][rozmer + 1]; //der } //calculate chi_opt chi2 = chi_opt; chi_opt = TMath::Sqrt(TMath::Abs(chi_opt)); //calculate new parameters regul_cycle = 0; for (j = 0; j < rozmer; j++) { working_space[4 * shift + j] = working_space[shift + j]; //temp_xk[j]=xk[j] } do { if (p->fAlphaOptim == kFitAlphaOptimal) { if (p->fStatisticType != kFitOptimMaxLikelihood) chi_min = 10000 * chi2; else chi_min = 0.1 * chi2; flag = 0; for (pi = 0.1; flag == 0 && pi <= 100; pi += 0.1) { for (j = 0; j < rozmer; j++) { working_space[shift + j] = working_space[4 * shift + j] + pi * alpha * working_space[2 * shift + j]; //xk[j]=temp_xk[j]+pi*alpha*der[j] } for (i = 0, j = 0; i < p->fNumberPeaks; i++) { if (p->fFixAmp[i] == false) { if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = 0; //xk[j] working_space[2 * i] = working_space[shift + j]; //parameter[2*i]=xk[j] j += 1; } if (p->fFixPosition[i] == false) { if (working_space[shift + j] < p->fXmin) //xk[j] working_space[shift + j] = p->fXmin; //xk[j] if (working_space[shift + j] > p->fXmax) //xk[j] working_space[shift + j] = p->fXmax; //xk[j] working_space[2 * i + 1] = working_space[shift + j]; //parameter[2*i+1]=xk[j] j += 1; } } if (p->fFixSigma == false) { if (working_space[shift + j] < 0.001) { //xk[j] working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel] = working_space[shift + j]; //parameter[peak_vel]=xk[j] j += 1; } if (p->fFixT == false) { working_space[peak_vel + 1] = working_space[shift + j]; //parameter[peak_vel+1]=xk[j] j += 1; } if (p->fFixB == false) { if (TMath::Abs(working_space[shift + j]) < 0.001) { //xk[j] if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = -0.001; //xk[j] else working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel + 2] = working_space[shift + j]; //parameter[peak_vel+2]=xk[j] j += 1; } if (p->fFixS == false) { working_space[peak_vel + 3] = working_space[shift + j]; //parameter[peak_vel+3]=xk[j] j += 1; } if (p->fFixA0 == false) { working_space[peak_vel + 4] = working_space[shift + j]; //parameter[peak_vel+4]=xk[j] j += 1; } if (p->fFixA1 == false) { working_space[peak_vel + 5] = working_space[shift + j]; //parameter[peak_vel+5]=xk[j] j += 1; } if (p->fFixA2 == false) { working_space[peak_vel + 6] = working_space[shift + j]; //parameter[peak_vel+6]=xk[j] j += 1; } chi2 = 0; for (i = p->fXmin; i <= p->fXmax; i++) { yw = source[i]; ywm = yw; f = Shape(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2], working_space[peak_vel + 4], working_space[peak_vel + 5], working_space[peak_vel + 6]); if (p->fStatisticType == kFitOptimChiFuncValues) { ywm = f; if (f < 0.00001) ywm = 0.00001; } if (p->fStatisticType == kFitOptimMaxLikelihood) { if (f > 0.00001) chi2 += yw * TMath::Log(f) - f; } else { if (ywm != 0) chi2 += (yw - f) * (yw - f) / ywm; } } if (chi2 < chi_min && p->fStatisticType != kFitOptimMaxLikelihood || chi2 > chi_min && p->fStatisticType == kFitOptimMaxLikelihood) { pmin = pi, chi_min = chi2; } else flag = 1; if (pi == 0.1) chi_min = chi2; chi = chi_min; } if (pmin != 0.1) { for (j = 0; j < rozmer; j++) { working_space[shift + j] = working_space[4 * shift + j] + pmin * alpha * working_space[2 * shift + j]; //xk[j]=temp_xk[j]+pmin*alpha*der[j] } for (i = 0, j = 0; i < p->fNumberPeaks; i++) { if (p->fFixAmp[i] == false) { if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = 0; //xk[j] working_space[2 * i] = working_space[shift + j]; //parameter[2*i]=xk[j] j += 1; } if (p->fFixPosition[i] == false) { if (working_space[shift + j] < p->fXmin) //xk[j] working_space[shift + j] = p->fXmin; //xk[j] if (working_space[shift + j] > p->fXmax) //xk[j] working_space[shift + j] = p->fXmax; //xk[j] working_space[2 * i + 1] = working_space[shift + j]; //parameter[2*i+1]=xk[j] j += 1; } } if (p->fFixSigma == false) { if (working_space[shift + j] < 0.001) { //xk[j] working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel] = working_space[shift + j]; //parameter[peak_vel]=xk[j] j += 1; } if (p->fFixT == false) { working_space[peak_vel + 1] = working_space[shift + j]; //parameter[peak_vel+1]=xk[j] j += 1; } if (p->fFixB == false) { if (TMath::Abs(working_space[shift + j]) < 0.001) { //xk[j] if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = -0.001; //xk[j] else working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel + 2] = working_space[shift + j]; //parameter[peak_vel+2]=xk[j] j += 1; } if (p->fFixS == false) { working_space[peak_vel + 3] = working_space[shift + j]; //parameter[peak_vel+3]=xk[j] j += 1; } if (p->fFixA0 == false) { working_space[peak_vel + 4] = working_space[shift + j]; //parameter[peak_vel+4]=xk[j] j += 1; } if (p->fFixA1 == false) { working_space[peak_vel + 5] = working_space[shift + j]; //parameter[peak_vel+5]=xk[j] j += 1; } if (p->fFixA2 == false) { working_space[peak_vel + 6] = working_space[shift + j]; //parameter[peak_vel+6]=xk[j] j += 1; } chi = chi_min; } } else { for (j = 0; j < rozmer; j++) { working_space[shift + j] = working_space[4 * shift + j] + alpha * working_space[2 * shift + j]; //xk[j]=temp_xk[j]+alpha*der[j] } for (i = 0, j = 0; i < p->fNumberPeaks; i++) { if (p->fFixAmp[i] == false) { if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = 0; //xk[j] working_space[2 * i] = working_space[shift + j]; //parameter[2*i]=xk[j] j += 1; } if (p->fFixPosition[i] == false) { if (working_space[shift + j] < p->fXmin) //xk[j] working_space[shift + j] = p->fXmin; //xk[j] if (working_space[shift + j] > p->fXmax) //xk[j] working_space[shift + j] = p->fXmax; //xk[j] working_space[2 * i + 1] = working_space[shift + j]; //parameter[2*i+1]=xk[j] j += 1; } } if (p->fFixSigma == false) { if (working_space[shift + j] < 0.001) { //xk[j] working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel] = working_space[shift + j]; //parameter[peak_vel]=xk[j] j += 1; } if (p->fFixT == false) { working_space[peak_vel + 1] = working_space[shift + j]; //parameter[peak_vel+1]=xk[j] j += 1; } if (p->fFixB == false) { if (TMath::Abs(working_space[shift + j]) < 0.001) { //xk[j] if (working_space[shift + j] < 0) //xk[j] working_space[shift + j] = -0.001; //xk[j] else working_space[shift + j] = 0.001; //xk[j] } working_space[peak_vel + 2] = working_space[shift + j]; //parameter[peak_vel+2]=xk[j] j += 1; } if (p->fFixS == false) { working_space[peak_vel + 3] = working_space[shift + j]; //parameter[peak_vel+3]=xk[j] j += 1; } if (p->fFixA0 == false) { working_space[peak_vel + 4] = working_space[shift + j]; //parameter[peak_vel+4]=xk[j] j += 1; } if (p->fFixA1 == false) { working_space[peak_vel + 5] = working_space[shift + j]; //parameter[peak_vel+5]=xk[j] j += 1; } if (p->fFixA2 == false) { working_space[peak_vel + 6] = working_space[shift + j]; //parameter[peak_vel+6]=xk[j] j += 1; } chi = 0; for (i = p->fXmin; i <= p->fXmax; i++) { yw = source[i]; ywm = yw; f = Shape(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2], working_space[peak_vel + 4], working_space[peak_vel + 5], working_space[peak_vel + 6]); if (p->fStatisticType == kFitOptimChiFuncValues) { ywm = f; if (f < 0.00001) ywm = 0.00001; } if (p->fStatisticType == kFitOptimMaxLikelihood) { if (f > 0.00001) chi += yw * TMath::Log(f) - f; } else { if (ywm != 0) chi += (yw - f) * (yw - f) / ywm; } } } chi2 = chi; chi = TMath::Sqrt(TMath::Abs(chi)); if (p->fAlphaOptim == kFitAlphaHalving && chi > 1E-6) alpha = alpha * chi_opt / (2 * chi); else if (p->fAlphaOptim == kFitAlphaOptimal) alpha = alpha / 10.0; iter += 1; regul_cycle += 1; } while ((chi > chi_opt && p->fStatisticType != kFitOptimMaxLikelihood || chi < chi_opt && p->fStatisticType == kFitOptimMaxLikelihood) && regul_cycle < kFitNumRegulCycles); for (j = 0; j < rozmer; j++) { working_space[4 * shift + j] = 0; //temp_xk[j] working_space[2 * shift + j] = 0; //der[j] } for (i = p->fXmin, chi_cel = 0; i <= p->fXmax; i++) { yw = source[i]; if (yw == 0) yw = 1; f = Shape(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2], working_space[peak_vel + 4], working_space[peak_vel + 5], working_space[peak_vel + 6]); chi_opt = (yw - f) * (yw - f) / yw; chi_cel += (yw - f) * (yw - f) / yw; //calculate gradient vector for (j = 0, k = 0; j < p->fNumberPeaks; j++) { if (p->fFixAmp[j] == false) { a = Deramp((double) i, working_space[2 * j + 1], working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); if (yw != 0) { working_space[2 * shift + k] += chi_opt; //der[k] b = a * a / yw; working_space[4 * shift + k] += b; //temp_xk[k] } k += 1; } if (p->fFixPosition[j] == false) { a = Deri0((double) i, working_space[2 * j], working_space[2 * j + 1], working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); if (yw != 0) { working_space[2 * shift + k] += chi_opt; //der[k] b = a * a / yw; working_space[4 * shift + k] += b; //temp_xk[k] } k += 1; } } if (p->fFixSigma == false) { a = Dersigma(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2]); if (yw != 0) { working_space[2 * shift + k] += chi_opt; //der[k] b = a * a / yw; working_space[4 * shift + k] += b; //temp_xk[k] } k += 1; } if (p->fFixT == false) { a = Dert(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 2]); if (yw != 0) { working_space[2 * shift + k] += chi_opt; //der[k] b = a * a / yw; working_space[4 * shift + k] += b; //temp_xk[k] } k += 1; } if (p->fFixB == false) { a = Derb(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 2]); if (yw != 0) { working_space[2 * shift + k] += chi_opt; //der[k] b = a * a / yw; working_space[4 * shift + k] += b; //temp_xk[k] } k += 1; } if (p->fFixS == false) { a = Ders(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel]); if (yw != 0) { working_space[2 * shift + k] += chi_opt; //der[k] b = a * a / yw; working_space[4 * shift + k] += b; //tem_xk[k] } k += 1; } if (p->fFixA0 == false) { a = 1.0; if (yw != 0) { working_space[2 * shift + k] += chi_opt; //der[k] b = a * a / yw; working_space[4 * shift + k] += b; //temp_xk[k] } k += 1; } if (p->fFixA1 == false) { a = Dera1((double) i); if (yw != 0) { working_space[2 * shift + k] += chi_opt; //der[k] b = a * a / yw; working_space[4 * shift + k] += b; //temp_xk[k] } k += 1; } if (p->fFixA2 == false) { a = Dera2((double) i); if (yw != 0) { working_space[2 * shift + k] += chi_opt; //der[k] b = a * a / yw; working_space[4 * shift + k] += b; //temp_xk[k] } k += 1; } } } b = p->fXmax - p->fXmin + 1 - rozmer; chi_er = chi_cel / b; for (i = 0, j = 0; i < p->fNumberPeaks; i++) { p->fArea[i] = Area(working_space[2 * i], working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 2]); if (p->fFixAmp[i] == false) { p->fAmpCalc[i] = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) p->fAmpErr[i] = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] if (p->fArea[i] > 0) { a = Derpa(working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 2]); b = working_space[4 * shift + j]; //temp_xk[j] if (b == 0) b = 1; else b = 1 / b; p->fAreaErr[i] = TMath::Sqrt(TMath::Abs(a * a * b * chi_er)); } else p->fAreaErr[i] = 0; j += 1; } else { p->fAmpCalc[i] = p->fAmpInit[i]; p->fAmpErr[i] = 0; p->fAreaErr[i] = 0; } if (p->fFixPosition[i] == false) { p->fPositionCalc[i] = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fPositionErr[i] = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //Der[j]/temp[j] j += 1; } else { p->fPositionCalc[i] = p->fPositionInit[i]; p->fPositionErr[i] = 0; } } if (p->fFixSigma == false) { p->fSigmaCalc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fSigmaErr = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fSigmaCalc = p->fSigmaInit; p->fSigmaErr = 0; } if (p->fFixT == false) { p->fTCalc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fTErr = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fTCalc = p->fTInit; p->fTErr = 0; } if (p->fFixB == false) { p->fBCalc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fBErr = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fBCalc = p->fBInit; p->fBErr = 0; } if (p->fFixS == false) { p->fSCalc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fSErr = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fSCalc = p->fSInit; p->fSErr = 0; } if (p->fFixA0 == false) { p->fA0Calc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fA0Err = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fA0Calc = p->fA0Init; p->fA0Err = 0; } if (p->fFixA1 == false) { p->fA1Calc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fA1Err = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fA1Calc = p->fA1Init; p->fA1Err = 0; } if (p->fFixA2 == false) { p->fA2Calc = working_space[shift + j]; //xk[j] if (working_space[3 * shift + j] != 0) //temp[j] p->fA2Err = TMath::Sqrt(TMath::Abs(working_space[2 * shift + j])) / TMath::Sqrt(TMath::Abs(working_space[3 * shift + j])); //der[j]/temp[j] j += 1; } else { p->fA2Calc = p->fA2Init; p->fA2Err = 0; } b = p->fXmax - p->fXmin + 1 - rozmer; p->fChi = chi_cel / b; for (i = p->fXmin; i <= p->fXmax; i++) { f = Shape(p->fNumberPeaks, (double) i, working_space, working_space[peak_vel], working_space[peak_vel + 1], working_space[peak_vel + 3], working_space[peak_vel + 2], working_space[peak_vel + 4], working_space[peak_vel + 5], working_space[peak_vel + 6]); source[i] = f; } for (i = 0; i < rozmer; i++) delete[]working_matrix[i]; delete[]working_matrix; delete[]working_space; return 0; } //____________________________________________________________________________ //////////AUXILIARY FUNCTIONS FOR TRANSFORM BASED FUNCTIONS//////////////////////// void TSpectrum::Haar(float *working_space, int num, int direction) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates Haar transform of a part of data // // Function parameters: // // -working_space-pointer to vector of transformed data // // -num-length of processed data // // -direction-forward or inverse transform // // // ////////////////////////////////////////////////////////////////////////////////// int i, ii, li, l2, l3, j, jj, jj1, lj, iter, m, jmin, jmax; double a, b, c, wlk; float val; for (i = 0; i < num; i++) working_space[i + num] = 0; i = num; iter = 0; for (; i > 1;) { iter += 1; i = i / 2; } if (direction == kTransformForward) { for (m = 1; m <= iter; m++) { li = iter + 1 - m; l2 = (int) TMath::Power(2, li - 1); for (i = 0; i < (2 * l2); i++) { working_space[num + i] = working_space[i]; } for (j = 0; j < l2; j++) { l3 = l2 + j; jj = 2 * j; val = working_space[jj + num] + working_space[jj + 1 + num]; working_space[j] = val; val = working_space[jj + num] - working_space[jj + 1 + num]; working_space[l3] = val; } } } val = working_space[0]; val = val / TMath::Sqrt(TMath::Power(2, iter)); working_space[0] = val; val = working_space[1]; val = val / TMath::Sqrt(TMath::Power(2, iter)); working_space[1] = val; for (ii = 2; ii <= iter; ii++) { i = ii - 1; wlk = 1 / TMath::Sqrt(TMath::Power(2, iter - i)); jmin = (int) TMath::Power(2, i); jmax = (int) TMath::Power(2, ii) - 1; for (j = jmin; j <= jmax; j++) { val = working_space[j]; a = val; a = a * wlk; val = a; working_space[j] = val; } } if (direction == kTransformInverse) { for (m = 1; m <= iter; m++) { a = 2; b = m - 1; c = TMath::Power(a, b); li = (int) c; for (i = 0; i < (2 * li); i++) { working_space[i + num] = working_space[i]; } for (j = 0; j < li; j++) { lj = li + j; jj = 2 * (j + 1) - 1; jj1 = jj - 1; val = working_space[j + num] - working_space[lj + num]; working_space[jj] = val; val = working_space[j + num] + working_space[lj + num]; working_space[jj1] = val; } } } return; } void TSpectrum::Walsh(float *working_space, int num) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates Walsh transform of a part of data // // Function parameters: // // -working_space-pointer to vector of transformed data // // -num-length of processed data // // // ////////////////////////////////////////////////////////////////////////////////// int i, m, nump = 1, mnum, mnum2, mp, ib, mp2, mnum21, iba, iter; double a; float val1, val2; for (i = 0; i < num; i++) working_space[i + num] = 0; i = num; iter = 0; for (; i > 1;) { iter += 1; i = i / 2; } for (m = 1; m <= iter; m++) { if (m == 1) nump = 1; else nump = nump * 2; mnum = num / nump; mnum2 = mnum / 2; for (mp = 0; mp < nump; mp++) { ib = mp * mnum; for (mp2 = 0; mp2 < mnum2; mp2++) { mnum21 = mnum2 + mp2 + ib; iba = ib + mp2; val1 = working_space[iba]; val2 = working_space[mnum21]; working_space[iba + num] = val1 + val2; working_space[mnum21 + num] = val1 - val2; } } for (i = 0; i < num; i++) { working_space[i] = working_space[i + num]; } } a = num; a = TMath::Sqrt(a); val2 = a; for (i = 0; i < num; i++) { val1 = working_space[i]; val1 = val1 / val2; working_space[i] = val1; } return; } void TSpectrum::BitReverse(float *working_space, int num) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion carries out bir-reverse reordering of data // // Function parameters: // // -working_space-pointer to vector of processed data // // -num-length of processed data // // // ////////////////////////////////////////////////////////////////////////////////// int ipower[26]; int i, ib, il, ibd, ip, ifac, i1; for (i = 0; i < num; i++) { working_space[i + num] = working_space[i]; } for (i = 1; i <= num; i++) { ib = i - 1; il = 1; lab9:ibd = ib / 2; ipower[il - 1] = 1; if (ib == (ibd * 2)) ipower[il - 1] = 0; if (ibd == 0) goto lab10; ib = ibd; il = il + 1; goto lab9; lab10:ip = 1; ifac = num; for (i1 = 1; i1 <= il; i1++) { ifac = ifac / 2; ip = ip + ifac * ipower[i1 - 1]; } working_space[ip - 1] = working_space[i - 1 + num]; } return; } void TSpectrum::Fourier(float *working_space, int num, int hartley, int direction, int zt_clear) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates Fourier based transform of a part of data // // Function parameters: // // -working_space-pointer to vector of transformed data // // -num-length of processed data // // -hartley-1 if it is Hartley transform, 0 othewise // // -direction-forward or inverse transform // // // ////////////////////////////////////////////////////////////////////////////////// int nxp2, nxp, i, j, k, m, iter, mxp, j1, j2, n1, n2, it; double a, b, c, d, sign, wpwr, arg, wr, wi, tr, ti, pi = 3.14159265358979323846; float val1, val2, val3, val4; if (direction == kTransformForward && zt_clear == 0) { for (i = 0; i < num; i++) working_space[i + num] = 0; } i = num; iter = 0; for (; i > 1;) { iter += 1; i = i / 2; } sign = -1; if (direction == kTransformInverse) sign = 1; nxp2 = num; for (it = 1; it <= iter; it++) { nxp = nxp2; nxp2 = nxp / 2; a = nxp2; wpwr = pi / a; for (m = 1; m <= nxp2; m++) { a = m - 1; arg = a * wpwr; wr = TMath::Cos(arg); wi = sign * TMath::Sin(arg); for (mxp = nxp; mxp <= num; mxp += nxp) { j1 = mxp - nxp + m; j2 = j1 + nxp2; val1 = working_space[j1 - 1]; val2 = working_space[j2 - 1]; val3 = working_space[j1 - 1 + num]; val4 = working_space[j2 - 1 + num]; a = val1; b = val2; c = val3; d = val4; tr = a - b; ti = c - d; a = a + b; val1 = a; working_space[j1 - 1] = val1; c = c + d; val1 = c; working_space[j1 - 1 + num] = val1; a = tr * wr - ti * wi; val1 = a; working_space[j2 - 1] = val1; a = ti * wr + tr * wi; val1 = a; working_space[j2 - 1 + num] = val1; } } } n2 = num / 2; n1 = num - 1; j = 1; for (i = 1; i <= n1; i++) { if (i >= j) goto lab55; val1 = working_space[j - 1]; val2 = working_space[j - 1 + num]; val3 = working_space[i - 1]; working_space[j - 1] = val3; working_space[j - 1 + num] = working_space[i - 1 + num]; working_space[i - 1] = val1; working_space[i - 1 + num] = val2; lab55:k = n2; lab60:if (k >= j) goto lab65; j = j - k; k = k / 2; goto lab60; lab65:j = j + k; } a = num; a = TMath::Sqrt(a); for (i = 0; i < num; i++) { if (hartley == 0) { val1 = working_space[i]; b = val1; b = b / a; val1 = b; working_space[i] = val1; b = working_space[i + num]; b = b / a; working_space[i + num] = b; } else { b = working_space[i]; c = working_space[i + num]; b = (b + c) / a; working_space[i] = b; working_space[i + num] = 0; } } if (hartley == 1 && direction == kTransformInverse) { for (i = 1; i < num; i++) working_space[num - i + num] = working_space[i]; working_space[0 + num] = working_space[0]; for (i = 0; i < num; i++) { working_space[i] = working_space[i + num]; working_space[i + num] = 0; } } return; } void TSpectrum::BitReverseHaar(float *working_space, int shift, int num, int start) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion carries out bir-reverse reordering for Haar transform // // Function parameters: // // -working_space-pointer to vector of processed data // // -shift-shift of position of processing // // -start-initial position of processed data // // -num-length of processed data // // // ////////////////////////////////////////////////////////////////////////////////// int ipower[26]; int i, ib, il, ibd, ip, ifac, i1; for (i = 0; i < num; i++) { working_space[i + shift + start] = working_space[i + start]; working_space[i + shift + start + 2 * shift] = working_space[i + start + 2 * shift]; } for (i = 1; i <= num; i++) { ib = i - 1; il = 1; lab9:ibd = ib / 2; ipower[il - 1] = 1; if (ib == (ibd * 2)) ipower[il - 1] = 0; if (ibd == 0) goto lab10; ib = ibd; il = il + 1; goto lab9; lab10:ip = 1; ifac = num; for (i1 = 1; i1 <= il; i1++) { ifac = ifac / 2; ip = ip + ifac * ipower[i1 - 1]; } working_space[ip - 1 + start] = working_space[i - 1 + shift + start]; working_space[ip - 1 + start + 2 * shift] = working_space[i - 1 + shift + start + 2 * shift]; } return; } int TSpectrum::GeneralExe(float *working_space, int zt_clear, int num, int degree, int type) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates generalized (mixed) transforms of different degrees// // Function parameters: // // -working_space-pointer to vector of transformed data // // -zt_clear-flag to clear imaginary data before staring // // -num-length of processed data // // -degree-degree of transform (see manual) // // -type-type of mixed transform (see manual) // // // ////////////////////////////////////////////////////////////////////////////////// int i, j, k, m, nump, mnum, mnum2, mp, ib, mp2, mnum21, iba, iter, mp2step, mppom, ring; double a, b, c, d, wpwr, arg, wr, wi, tr, ti, pi = 3.14159265358979323846; float val1, val2, val3, val4, a0oldr = 0, b0oldr = 0, a0r, b0r; if (zt_clear == 0) { for (i = 0; i < num; i++) working_space[i + 2 * num] = 0; } i = num; iter = 0; for (; i > 1;) { iter += 1; i = i / 2; } a = num; wpwr = 2.0 * pi / a; nump = num; mp2step = 1; ring = num; for (i = 0; i < iter - degree; i++) ring = ring / 2; for (m = 1; m <= iter; m++) { nump = nump / 2; mnum = num / nump; mnum2 = mnum / 2; if (m > degree && (type == kTransformFourierHaar || type == kTransformWalshHaar || type == kTransformCosHaar || type == kTransformSinHaar)) mp2step *= 2; if (ring > 1) ring = ring / 2; for (mp = 0; mp < nump; mp++) { if (type != kTransformWalshHaar) { mppom = mp; mppom = mppom % ring; a = 0; j = 1; k = num / 4; for (i = 0; i < (iter - 1); i++) { if ((mppom & j) != 0) a = a + k; j = j * 2; k = k / 2; } arg = a * wpwr; wr = TMath::Cos(arg); wi = TMath::Sin(arg); } else { wr = 1; wi = 0; } ib = mp * mnum; for (mp2 = 0; mp2 < mnum2; mp2++) { mnum21 = mnum2 + mp2 + ib; iba = ib + mp2; if (mp2 % mp2step == 0) { a0r = a0oldr; b0r = b0oldr; a0r = 1 / TMath::Sqrt(2.0); b0r = 1 / TMath::Sqrt(2.0); } else { a0r = 1; b0r = 0; } val1 = working_space[iba]; val2 = working_space[mnum21]; val3 = working_space[iba + 2 * num]; val4 = working_space[mnum21 + 2 * num]; a = val1; b = val2; c = val3; d = val4; tr = a * a0r + b * b0r; val1 = tr; working_space[num + iba] = val1; ti = c * a0r + d * b0r; val1 = ti; working_space[num + iba + 2 * num] = val1; tr = a * b0r * wr - c * b0r * wi - b * a0r * wr + d * a0r * wi; val1 = tr; working_space[num + mnum21] = val1; ti = c * b0r * wr + a * b0r * wi - d * a0r * wr - b * a0r * wi; val1 = ti; working_space[num + mnum21 + 2 * num] = val1; } } for (i = 0; i < num; i++) { val1 = working_space[num + i]; working_space[i] = val1; val1 = working_space[num + i + 2 * num]; working_space[i + 2 * num] = val1; } } return (0); } int TSpectrum::GeneralInv(float *working_space, int num, int degree, int type) { ////////////////////////////////////////////////////////////////////////////////// // AUXILIARY FUNCION // // // // This funcion calculates inverse generalized (mixed) transforms // // Function parameters: // // -working_space-pointer to vector of transformed data // // -num-length of processed data // // -degree-degree of transform (see manual) // // -type-type of mixed transform (see manual) // // // ////////////////////////////////////////////////////////////////////////////////// int i, j, k, m, nump = 1, mnum, mnum2, mp, ib, mp2, mnum21, iba, iter, mp2step, mppom, ring; double a, b, c, d, wpwr, arg, wr, wi, tr, ti, pi = 3.14159265358979323846; float val1, val2, val3, val4, a0oldr = 0, b0oldr = 0, a0r, b0r; i = num; iter = 0; for (; i > 1;) { iter += 1; i = i / 2; } a = num; wpwr = 2.0 * pi / a; mp2step = 1; if (type == kTransformFourierHaar || type == kTransformWalshHaar || type == kTransformCosHaar || type == kTransformSinHaar) { for (i = 0; i < iter - degree; i++) mp2step *= 2; } ring = 1; for (m = 1; m <= iter; m++) { if (m == 1) nump = 1; else nump = nump * 2; mnum = num / nump; mnum2 = mnum / 2; if (m > iter - degree + 1) ring *= 2; for (mp = nump - 1; mp >= 0; mp--) { if (type != kTransformWalshHaar) { mppom = mp; mppom = mppom % ring; a = 0; j = 1; k = num / 4; for (i = 0; i < (iter - 1); i++) { if ((mppom & j) != 0) a = a + k; j = j * 2; k = k / 2; } arg = a * wpwr; wr = TMath::Cos(arg); wi = TMath::Sin(arg); } else { wr = 1; wi = 0; } ib = mp * mnum; for (mp2 = 0; mp2 < mnum2; mp2++) { mnum21 = mnum2 + mp2 + ib; iba = ib + mp2; if (mp2 % mp2step == 0) { a0r = a0oldr; b0r = b0oldr; a0r = 1 / TMath::Sqrt(2.0); b0r = 1 / TMath::Sqrt(2.0); } else { a0r = 1; b0r = 0; } val1 = working_space[iba]; val2 = working_space[mnum21]; val3 = working_space[iba + 2 * num]; val4 = working_space[mnum21 + 2 * num]; a = val1; b = val2; c = val3; d = val4; tr = a * a0r + b * wr * b0r + d * wi * b0r; val1 = tr; working_space[num + iba] = val1; ti = c * a0r + d * wr * b0r - b * wi * b0r; val1 = ti; working_space[num + iba + 2 * num] = val1; tr = a * b0r - b * wr * a0r - d * wi * a0r; val1 = tr; working_space[num + mnum21] = val1; ti = c * b0r - d * wr * a0r + b * wi * a0r; val1 = ti; working_space[num + mnum21 + 2 * num] = val1; } } if (m <= iter - degree && (type == kTransformFourierHaar || type == kTransformWalshHaar || type == kTransformCosHaar || type == kTransformSinHaar)) mp2step /= 2; for (i = 0; i < num; i++) { val1 = working_space[num + i]; working_space[i] = val1; val1 = working_space[num + i + 2 * num]; working_space[i + 2 * num] = val1; } } return (0); } //////////END OF AUXILIARY FUNCTIONS FOR TRANSFORM! FUNCTION//////////////////////// //////////TRANSFORM1 FUNCTION - CALCULATES DIFFERENT 1-D DIRECT AND INVERSE ORTHOGONAL TRANSFORMS////// const char *TSpectrum::Transform1(const float *source, float *dest, int size, int type, int direction, int degree) { ///////////////////////////////////////////////////////////////////////////// /* ONE-DIMENSIONAL TRANSFORM FUNCTION */ /* This function transforms the source spectrum. The calling program */ /* should fill in input parameters. */ /* Transformed data are written into dest spectrum. */ /* */ /* Function parameters: */ /* source-pointer to the vector of source spectrum, its length should */ /* be size except for inverse FOURIER, FOUR-WALSh, FOUR-HAAR */ /* transform. These need 2*size length to supply real and */ /* imaginary coefficients. */ /* dest-pointer to the vector of dest data, its length should be */ /* size except for direct FOURIER, FOUR-WALSh, FOUR-HAAR. These */ /* need 2*size length to store real and imaginary coefficients */ /* size-basic length of source and dest spectra */ /* type-type of transform */ /* direction-transform direction (forward, inverse) */ /* degree-applied only for mixed transforms */ /* */ ///////////////////////////////////////////////////////////////////////////// int i, j, n, k = 1, m, l; float val; double a, b, pi = 3.14159265358979323846; float *working_space = 0; if (size <= 0) return "Wrong Parameters"; j = 0; n = 1; for (; n < size;) { j += 1; n = n * 2; } if (n != size) return ("LENGTH MUST BE POWER OF 2"); if (type < kTransformHaar || type > kTransformSinHaar) return ("WRONG TRANSFORM TYPE"); if (direction != kTransformForward && direction != kTransformInverse) return ("WRONG TRANSFORM DIRECTION"); if (type >= kTransformFourierWalsh && type <= kTransformSinHaar) { if (degree > j || degree < 1) return ("WRONG DEGREE"); if (type >= kTransformCosWalsh) degree += 1; k = (int) TMath::Power(2, degree); j = size / k; } switch (type) { case kTransformHaar: case kTransformWalsh: working_space = new float[2 * size]; break; case kTransformCos: case kTransformSin: case kTransformFourier: case kTransformHartley: case kTransformFourierWalsh: case kTransformFourierHaar: case kTransformWalshHaar: working_space = new float[4 * size]; break; case kTransformCosWalsh: case kTransformCosHaar: case kTransformSinWalsh: case kTransformSinHaar: working_space = new float[8 * size]; break; } if (direction == kTransformForward) { switch (type) { case kTransformHaar: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Haar(working_space, size, direction); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformWalsh: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Walsh(working_space, size); BitReverse(working_space, size); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformCos: size = 2 * size; for (i = 1; i <= (size / 2); i++) { val = source[i - 1]; working_space[i - 1] = val; working_space[size - i] = val; } Fourier(working_space, size, 0, kTransformForward, 0); for (i = 0; i < size / 2; i++) { a = pi * (double) i / (double) size; a = TMath::Cos(a); b = working_space[i]; a = b / a; working_space[i] = a; working_space[i + size] = 0; } working_space[0] = working_space[0] / TMath::Sqrt(2.0); for (i = 0; i < size / 2; i++) { dest[i] = working_space[i]; } break; case kTransformSin: size = 2 * size; for (i = 1; i <= (size / 2); i++) { val = source[i - 1]; working_space[i - 1] = val; working_space[size - i] = -val; } Fourier(working_space, size, 0, kTransformForward, 0); for (i = 0; i < size / 2; i++) { a = pi * (double) i / (double) size; a = TMath::Sin(a); b = working_space[i]; if (a != 0) a = b / a; working_space[i - 1] = a; working_space[i + size] = 0; } working_space[size / 2 - 1] = working_space[size / 2] / TMath::Sqrt(2.0); for (i = 0; i < size / 2; i++) { dest[i] = working_space[i]; } break; case kTransformFourier: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Fourier(working_space, size, 0, kTransformForward, 0); for (i = 0; i < 2 * size; i++) { dest[i] = working_space[i]; } break; case kTransformHartley: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Fourier(working_space, size, 1, kTransformForward, 0); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformFourierWalsh: case kTransformFourierHaar: case kTransformWalshHaar: case kTransformCosWalsh: case kTransformCosHaar: case kTransformSinWalsh: case kTransformSinHaar: for (i = 0; i < size; i++) { val = source[i]; if (type == kTransformCosWalsh || type == kTransformCosHaar) { j = (int) TMath::Power(2, degree) / 2; k = i / j; k = 2 * k * j; working_space[k + i % j] = val; working_space[k + 2 * j - 1 - i % j] = val; } else if (type == kTransformSinWalsh || type == kTransformSinHaar) { j = (int) TMath::Power(2, degree) / 2; k = i / j; k = 2 * k * j; working_space[k + i % j] = val; working_space[k + 2 * j - 1 - i % j] = -val; } else working_space[i] = val; } if (type == kTransformFourierWalsh || type == kTransformFourierHaar || type == kTransformWalshHaar) { for (i = 0; i < j; i++) BitReverseHaar(working_space, size, k, i * k); GeneralExe(working_space, 0, size, degree, type); } else if (type == kTransformCosWalsh || type == kTransformCosHaar) { m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); GeneralExe(working_space, 0, 2 * size, degree, type); for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); a = TMath::Cos(a); b = working_space[k + i % j]; if (i % j == 0) a = b / TMath::Sqrt(2.0); else a = b / a; working_space[i] = a; working_space[i + 2 * size] = 0; } } else if (type == kTransformSinWalsh || type == kTransformSinHaar) { m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); GeneralExe(working_space, 0, 2 * size, degree, type); for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); a = TMath::Cos(a); b = working_space[j + k + i % j]; if (i % j == 0) a = b / TMath::Sqrt(2.0); else a = b / a; working_space[j + k / 2 - i % j - 1] = a; working_space[i + 2 * size] = 0; } } if (type > kTransformWalshHaar) k = (int) TMath::Power(2, degree - 1); else k = (int) TMath::Power(2, degree); j = size / k; for (i = 0, l = 0; i < size; i++, l = (l + k) % size) { working_space[size + i] = working_space[l + i / j]; working_space[size + i + 2 * size] = working_space[l + i / j + 2 * size]; } for (i = 0; i < size; i++) { working_space[i] = working_space[size + i]; working_space[i + 2 * size] = working_space[size + i + 2 * size]; } for (i = 0; i < size; i++) { dest[i] = working_space[i]; } if (type == kTransformFourierWalsh || type == kTransformFourierHaar) { for (i = 0; i < size; i++) { dest[size + i] = working_space[i + 2 * size]; } } break; } } else if (direction == kTransformInverse) { switch (type) { case kTransformHaar: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Haar(working_space, size, direction); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformWalsh: for (i = 0; i < size; i++) { working_space[i] = source[i]; } BitReverse(working_space, size); Walsh(working_space, size); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformCos: for (i = 0; i < size; i++) { working_space[i] = source[i]; } size = 2 * size; working_space[0] = working_space[0] * TMath::Sqrt(2.0); for (i = 0; i < size / 2; i++) { a = pi * (double) i / (double) size; b = TMath::Sin(a); a = TMath::Cos(a); working_space[i + size] = (double) working_space[i] * b; working_space[i] = (double) working_space[i] * a; } for (i = 2; i <= (size / 2); i++) { working_space[size - i + 1] = working_space[i - 1]; working_space[size - i + 1 + size] = -working_space[i - 1 + size]; } working_space[size / 2] = 0; working_space[size / 2 + size] = 0; Fourier(working_space, size, 0, kTransformInverse, 1); for (i = 0; i < size / 2; i++) { dest[i] = working_space[i]; } break; case kTransformSin: for (i = 0; i < size; i++) { working_space[i] = source[i]; } size = 2 * size; working_space[size / 2] = working_space[size / 2 - 1] * TMath::Sqrt(2.0); for (i = size / 2 - 1; i > 0; i--) { a = pi * (double) i / (double) size; working_space[i + size] = -(double) working_space[i - 1] * TMath::Cos(a); working_space[i] = (double) working_space[i - 1] * TMath::Sin(a); } for (i = 2; i <= (size / 2); i++) { working_space[size - i + 1] = working_space[i - 1]; working_space[size - i + 1 + size] = -working_space[i - 1 + size]; } working_space[0] = 0; working_space[size] = 0; working_space[size / 2 + size] = 0; Fourier(working_space, size, 0, kTransformInverse, 0); for (i = 0; i < size / 2; i++) { dest[i] = working_space[i]; } break; case kTransformFourier: for (i = 0; i < 2 * size; i++) { working_space[i] = source[i]; } Fourier(working_space, size, 0, kTransformInverse, 0); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformHartley: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Fourier(working_space, size, 1, kTransformInverse, 0); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformFourierWalsh: case kTransformFourierHaar: case kTransformWalshHaar: case kTransformCosWalsh: case kTransformCosHaar: case kTransformSinWalsh: case kTransformSinHaar: for (i = 0; i < size; i++) { working_space[i] = source[i]; } if (type == kTransformFourierWalsh || type == kTransformFourierHaar) { for (i = 0; i < size; i++) { working_space[i + 2 * size] = source[size + i]; } } if (type > kTransformWalshHaar) k = (int) TMath::Power(2, degree - 1); else k = (int) TMath::Power(2, degree); j = size / k; for (i = 0, l = 0; i < size; i++, l = (l + k) % size) { working_space[size + l + i / j] = working_space[i]; working_space[size + l + i / j + 2 * size] = working_space[i + 2 * size]; } for (i = 0; i < size; i++) { working_space[i] = working_space[size + i]; working_space[i + 2 * size] = working_space[size + i + 2 * size]; } if (type == kTransformFourierWalsh || type == kTransformFourierHaar || type == kTransformWalshHaar) { GeneralInv(working_space, size, degree, type); for (i = 0; i < j; i++) BitReverseHaar(working_space, size, k, i * k); } else if (type == kTransformCosWalsh || type == kTransformCosHaar) { j = (int) TMath::Power(2, degree) / 2; m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); if (i % j == 0) { working_space[2 * size + k + i % j] = working_space[i] * TMath::Sqrt(2.0); working_space[4 * size + 2 * size + k + i % j] = 0; } else { b = TMath::Sin(a); a = TMath::Cos(a); working_space[4 * size + 2 * size + k + i % j] = -(double) working_space[i] * b; working_space[2 * size + k + i % j] = (double) working_space[i] * a; } } for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; if (i % j == 0) { working_space[2 * size + k + j] = 0; working_space[4 * size + 2 * size + k + j] = 0; } else { working_space[2 * size + k + 2 * j - i % j] = working_space[2 * size + k + i % j]; working_space[4 * size + 2 * size + k + 2 * j - i % j] = -working_space[4 * size + 2 * size + k + i % j]; } } for (i = 0; i < 2 * size; i++) { working_space[i] = working_space[2 * size + i]; working_space[4 * size + i] = working_space[4 * size + 2 * size + i]; } GeneralInv(working_space, 2 * size, degree, type); m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); } else if (type == kTransformSinWalsh || type == kTransformSinHaar) { j = (int) TMath::Power(2, degree) / 2; m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); if (i % j == 0) { working_space[2 * size + k + j + i % j] = working_space[j + k / 2 - i % j - 1] * TMath::Sqrt(2.0); working_space[4 * size + 2 * size + k + j + i % j] = 0; } else { b = TMath::Sin(a); a = TMath::Cos(a); working_space[4 * size + 2 * size + k + j + i % j] = -(double) working_space[j + k / 2 - i % j - 1] * b; working_space[2 * size + k + j + i % j] = (double) working_space[j + k / 2 - i % j - 1] * a; } } for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; if (i % j == 0) { working_space[2 * size + k] = 0; working_space[4 * size + 2 * size + k] = 0; } else { working_space[2 * size + k + i % j] = working_space[2 * size + k + 2 * j - i % j]; working_space[4 * size + 2 * size + k + i % j] = -working_space[4 * size + 2 * size + k + 2 * j - i % j]; } } for (i = 0; i < 2 * size; i++) { working_space[i] = working_space[2 * size + i]; working_space[4 * size + i] = working_space[4 * size + 2 * size + i]; } GeneralInv(working_space, 2 * size, degree, type); for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); } for (i = 0; i < size; i++) { if (type >= kTransformCosWalsh) { k = i / j; k = 2 * k * j; val = working_space[k + i % j]; } else val = working_space[i]; dest[i] = val; } break; } } delete[]working_space; return 0; } //______________________________________________________________________________ const char *TSpectrum::Filter1Zonal(const float *source, float *dest, int size, int type, int degree, int fXmin, int fXmax, float filter_coeff) { ///////////////////////////////////////////////////////////////////////////// /* ONE-DIMENSIONAL FILTER ZONAL FUNCTION */ /* This function transforms the source spectrum. The calling program */ /* should fill in input parameters. Then it sets transformed */ /* coefficients in the given region (fXmin, fXmax) to the given */ /* filter_coeff and transforms it back */ /* Filtered data are written into dest spectrum. */ /* */ /* Function parameters: */ /* source-pointer to the vector of source spectrum, its length should */ /* be size except for inverse FOURIER, FOUR-WALSh, FOUR-HAAR */ /* transform. These need 2*size length to supply real and */ /* imaginary coefficients. */ /* dest-pointer to the vector of dest data, its length should be */ /* size except for direct FOURIER, FOUR-WALSh, FOUR-HAAR. These */ /* need 2*size length to store real and imaginary coefficients */ /* size-basic length of source and dest spectra */ /* type-type of transform */ /* degree-applied only for mixed transforms */ /* fXmin-low limit of filtered region */ /* fXmax-high limit of filtered region */ /* filter_coeff-value which is set in filtered region */ /* */ ///////////////////////////////////////////////////////////////////////////// //////////FILTER1_ZONAL FUNCTION - CALCULATES DIFFERENT 1-D ORTHOGONAL TRANSFORMS, SETS GIVEN REGION TO FILTER COEFFICIENT AND TRANSFORMS IT BACK////// int i, j, n, k = 1, m, l; float val; float *working_space = 0; double a, b, pi = 3.14159265358979323846, old_area, new_area; if (size <= 0) return "Wrong Parameters"; j = 0; n = 1; for (; n < size;) { j += 1; n = n * 2; } if (n != size) return ("LENGTH MUST BE POWER OF 2"); if (type < kTransformHaar || type > kTransformSinHaar) return ("WRONG TRANSFORM TYPE"); if (type >= kTransformFourierWalsh && type <= kTransformSinHaar) { if (degree > j || degree < 1) return ("WRONG DEGREE"); if (type >= kTransformCosWalsh) degree += 1; k = (int) TMath::Power(2, degree); j = size / k; } if (fXmin < 0 || fXmin > fXmax) return ("WRONG LOW REGION LIMIT"); if (fXmax < fXmin || fXmax >= size) return ("WRONG HIGH REGION LIMIT"); switch (type) { case kTransformHaar: case kTransformWalsh: working_space = new float[2 * size]; break; case kTransformCos: case kTransformSin: case kTransformFourier: case kTransformHartley: case kTransformFourierWalsh: case kTransformFourierHaar: case kTransformWalshHaar: working_space = new float[4 * size]; break; case kTransformCosWalsh: case kTransformCosHaar: case kTransformSinWalsh: case kTransformSinHaar: working_space = new float[8 * size]; break; } switch (type) { case kTransformHaar: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Haar(working_space, size, kTransformForward); break; case kTransformWalsh: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Walsh(working_space, size); BitReverse(working_space, size); break; case kTransformCos: size = 2 * size; for (i = 1; i <= (size / 2); i++) { val = source[i - 1]; working_space[i - 1] = val; working_space[size - i] = val; } Fourier(working_space, size, 0, kTransformForward, 0); for (i = 0; i < size / 2; i++) { a = pi * (double) i / (double) size; a = TMath::Cos(a); b = working_space[i]; a = b / a; working_space[i] = a; working_space[i + size] = 0; } working_space[0] = working_space[0] / TMath::Sqrt(2.0); size = size / 2; break; case kTransformSin: size = 2 * size; for (i = 1; i <= (size / 2); i++) { val = source[i - 1]; working_space[i - 1] = val; working_space[size - i] = -val; } Fourier(working_space, size, 0, kTransformForward, 0); for (i = 0; i < size / 2; i++) { a = pi * (double) i / (double) size; a = TMath::Sin(a); b = working_space[i]; if (a != 0) a = b / a; working_space[i - 1] = a; working_space[i + size] = 0; } working_space[size / 2 - 1] = working_space[size / 2] / TMath::Sqrt(2.0); size = size / 2; break; case kTransformFourier: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Fourier(working_space, size, 0, kTransformForward, 0); break; case kTransformHartley: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Fourier(working_space, size, 1, kTransformForward, 0); break; case kTransformFourierWalsh: case kTransformFourierHaar: case kTransformWalshHaar: case kTransformCosWalsh: case kTransformCosHaar: case kTransformSinWalsh: case kTransformSinHaar: for (i = 0; i < size; i++) { val = source[i]; if (type == kTransformCosWalsh || type == kTransformCosHaar) { j = (int) TMath::Power(2, degree) / 2; k = i / j; k = 2 * k * j; working_space[k + i % j] = val; working_space[k + 2 * j - 1 - i % j] = val; } else if (type == kTransformSinWalsh || type == kTransformSinHaar) { j = (int) TMath::Power(2, degree) / 2; k = i / j; k = 2 * k * j; working_space[k + i % j] = val; working_space[k + 2 * j - 1 - i % j] = -val; } else working_space[i] = val; } if (type == kTransformFourierWalsh || type == kTransformFourierHaar || type == kTransformWalshHaar) { for (i = 0; i < j; i++) BitReverseHaar(working_space, size, k, i * k); GeneralExe(working_space, 0, size, degree, type); } else if (type == kTransformCosWalsh || type == kTransformCosHaar) { m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); GeneralExe(working_space, 0, 2 * size, degree, type); for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); a = TMath::Cos(a); b = working_space[k + i % j]; if (i % j == 0) a = b / TMath::Sqrt(2.0); else a = b / a; working_space[i] = a; working_space[i + 2 * size] = 0; } } else if (type == kTransformSinWalsh || type == kTransformSinHaar) { m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); GeneralExe(working_space, 0, 2 * size, degree, type); for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); a = TMath::Cos(a); b = working_space[j + k + i % j]; if (i % j == 0) a = b / TMath::Sqrt(2.0); else a = b / a; working_space[j + k / 2 - i % j - 1] = a; working_space[i + 2 * size] = 0; } } if (type > kTransformWalshHaar) k = (int) TMath::Power(2, degree - 1); else k = (int) TMath::Power(2, degree); j = size / k; for (i = 0, l = 0; i < size; i++, l = (l + k) % size) { working_space[size + i] = working_space[l + i / j]; working_space[size + i + 2 * size] = working_space[l + i / j + 2 * size]; } for (i = 0; i < size; i++) { working_space[i] = working_space[size + i]; working_space[i + 2 * size] = working_space[size + i + 2 * size]; } break; } for (i = 0, old_area = 0; i < size; i++) { old_area += working_space[i]; } for (i = 0, new_area = 0; i < size; i++) { if (i >= fXmin && i <= fXmax) working_space[i] = filter_coeff; new_area += working_space[i]; } if (new_area != 0) { a = old_area / new_area; for (i = 0; i < size; i++) { working_space[i] *= a; } } if (type == kTransformFourier) { for (i = 0, old_area = 0; i < size; i++) { old_area += working_space[i + size]; } for (i = 0, new_area = 0; i < size; i++) { if (i >= fXmin && i <= fXmax) working_space[i + size] = filter_coeff; new_area += working_space[i + size]; } if (new_area != 0) { a = old_area / new_area; for (i = 0; i < size; i++) { working_space[i + size] *= a; } } } else if (type == kTransformFourierWalsh || type == kTransformFourierHaar) { for (i = 0, old_area = 0; i < size; i++) { old_area += working_space[i + 2 * size]; } for (i = 0, new_area = 0; i < size; i++) { if (i >= fXmin && i <= fXmax) working_space[i + 2 * size] = filter_coeff; new_area += working_space[i + 2 * size]; } if (new_area != 0) { a = old_area / new_area; for (i = 0; i < size; i++) { working_space[i + 2 * size] *= a; } } } switch (type) { case kTransformHaar: Haar(working_space, size, kTransformInverse); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformWalsh: BitReverse(working_space, size); Walsh(working_space, size); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformCos: size = 2 * size; working_space[0] = working_space[0] * TMath::Sqrt(2.0); for (i = 0; i < size / 2; i++) { a = pi * (double) i / (double) size; b = TMath::Sin(a); a = TMath::Cos(a); working_space[i + size] = (double) working_space[i] * b; working_space[i] = (double) working_space[i] * a; } for (i = 2; i <= (size / 2); i++) { working_space[size - i + 1] = working_space[i - 1]; working_space[size - i + 1 + size] = -working_space[i - 1 + size]; } working_space[size / 2] = 0; working_space[size / 2 + size] = 0; Fourier(working_space, size, 0, kTransformInverse, 1); for (i = 0; i < size / 2; i++) { dest[i] = working_space[i]; } break; case kTransformSin: size = 2 * size; working_space[size / 2] = working_space[size / 2 - 1] * TMath::Sqrt(2.0); for (i = size / 2 - 1; i > 0; i--) { a = pi * (double) i / (double) size; working_space[i + size] = -(double) working_space[i - 1] * TMath::Cos(a); working_space[i] = (double) working_space[i - 1] * TMath::Sin(a); } for (i = 2; i <= (size / 2); i++) { working_space[size - i + 1] = working_space[i - 1]; working_space[size - i + 1 + size] = -working_space[i - 1 + size]; } working_space[0] = 0; working_space[size] = 0; working_space[size / 2 + size] = 0; Fourier(working_space, size, 0, kTransformInverse, 0); for (i = 0; i < size / 2; i++) { dest[i] = working_space[i]; } break; case kTransformFourier: Fourier(working_space, size, 0, kTransformInverse, 0); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformHartley: Fourier(working_space, size, 1, kTransformInverse, 0); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformFourierWalsh: case kTransformFourierHaar: case kTransformWalshHaar: case kTransformCosWalsh: case kTransformCosHaar: case kTransformSinWalsh: case kTransformSinHaar: if (type > kTransformWalshHaar) k = (int) TMath::Power(2, degree - 1); else k = (int) TMath::Power(2, degree); j = size / k; for (i = 0, l = 0; i < size; i++, l = (l + k) % size) { working_space[size + l + i / j] = working_space[i]; working_space[size + l + i / j + 2 * size] = working_space[i + 2 * size]; } for (i = 0; i < size; i++) { working_space[i] = working_space[size + i]; working_space[i + 2 * size] = working_space[size + i + 2 * size]; } if (type == kTransformFourierWalsh || type == kTransformFourierHaar || type == kTransformWalshHaar) { GeneralInv(working_space, size, degree, type); for (i = 0; i < j; i++) BitReverseHaar(working_space, size, k, i * k); } else if (type == kTransformCosWalsh || type == kTransformCosHaar) { j = (int) TMath::Power(2, degree) / 2; m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); if (i % j == 0) { working_space[2 * size + k + i % j] = working_space[i] * TMath::Sqrt(2.0); working_space[4 * size + 2 * size + k + i % j] = 0; } else { b = TMath::Sin(a); a = TMath::Cos(a); working_space[4 * size + 2 * size + k + i % j] = -(double) working_space[i] * b; working_space[2 * size + k + i % j] = (double) working_space[i] * a; } } for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; if (i % j == 0) { working_space[2 * size + k + j] = 0; working_space[4 * size + 2 * size + k + j] = 0; } else { working_space[2 * size + k + 2 * j - i % j] = working_space[2 * size + k + i % j]; working_space[4 * size + 2 * size + k + 2 * j - i % j] = -working_space[4 * size + 2 * size + k + i % j]; } } for (i = 0; i < 2 * size; i++) { working_space[i] = working_space[2 * size + i]; working_space[4 * size + i] = working_space[4 * size + 2 * size + i]; } GeneralInv(working_space, 2 * size, degree, type); m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); } else if (type == kTransformSinWalsh || type == kTransformSinHaar) { j = (int) TMath::Power(2, degree) / 2; m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); if (i % j == 0) { working_space[2 * size + k + j + i % j] = working_space[j + k / 2 - i % j - 1] * TMath::Sqrt(2.0); working_space[4 * size + 2 * size + k + j + i % j] = 0; } else { b = TMath::Sin(a); a = TMath::Cos(a); working_space[4 * size + 2 * size + k + j + i % j] = -(double) working_space[j + k / 2 - i % j - 1] * b; working_space[2 * size + k + j + i % j] = (double) working_space[j + k / 2 - i % j - 1] * a; } } for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; if (i % j == 0) { working_space[2 * size + k] = 0; working_space[4 * size + 2 * size + k] = 0; } else { working_space[2 * size + k + i % j] = working_space[2 * size + k + 2 * j - i % j]; working_space[4 * size + 2 * size + k + i % j] = -working_space[4 * size + 2 * size + k + 2 * j - i % j]; } } for (i = 0; i < 2 * size; i++) { working_space[i] = working_space[2 * size + i]; working_space[4 * size + i] = working_space[4 * size + 2 * size + i]; } GeneralInv(working_space, 2 * size, degree, type); for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); } for (i = 0; i < size; i++) { if (type >= kTransformCosWalsh) { k = i / j; k = 2 * k * j; val = working_space[k + i % j]; } else val = working_space[i]; dest[i] = val; } break; } delete[]working_space; return 0; } //___________________________________________________________________________ //////////ENHANCE1 FUNCTION - CALCULATES DIFFERENT 1-D ORTHOGONAL TRANSFORMS, MULTIPLIES GIVEN REGION BY ENHANCE COEFFICIENT AND TRANSFORMS IT BACK////// const char *TSpectrum::Enhance1(const float *source, float *dest, int size, int type, int degree, int fXmin, int fXmax, float enhance_coeff) { ///////////////////////////////////////////////////////////////////////////// /* ONE-DIMENSIONAL ENHANCE ZONAL FUNCTION */ /* This function transforms the source spectrum. The calling program */ /* should fill in input parameters. Then it multiplies transformed */ /* coefficients in the given region (fXmin, fXmax) by the given */ /* enhance_coeff and transforms it back */ /* Processed data are written into dest spectrum. */ /* */ /* Function parameters: */ /* source-pointer to the vector of source spectrum, its length should */ /* be size except for inverse FOURIER, FOUR-WALSh, FOUR-HAAR */ /* transform. These need 2*size length to supply real and */ /* imaginary coefficients. */ /* dest-pointer to the vector of dest data, its length should be */ /* size except for direct FOURIER, FOUR-WALSh, FOUR-HAAR. These */ /* need 2*size length to store real and imaginary coefficients */ /* size-basic length of source and dest spectra */ /* type-type of transform */ /* degree-applied only for mixed transforms */ /* fXmin-low limit of filtered region */ /* fXmax-high limit of filtered region */ /* enhance_coeff-value by which the filtered region is multiplied */ /* */ ///////////////////////////////////////////////////////////////////////////// int i, j, n, k = 1, m, l; float val; float *working_space = 0; double a, b, pi = 3.14159265358979323846, old_area, new_area; if (size <= 0) return "Wrong Parameters"; j = 0; n = 1; for (; n < size;) { j += 1; n = n * 2; } if (n != size) return ("LENGTH MUST BE POWER OF 2"); if (type < kTransformHaar || type > kTransformSinHaar) return ("WRONG TRANSFORM TYPE"); if (type >= kTransformFourierWalsh && type <= kTransformSinHaar) { if (degree > j || degree < 1) return ("WRONG DEGREE"); if (type >= kTransformCosWalsh) degree += 1; k = (int) TMath::Power(2, degree); j = size / k; } if (fXmin < 0 || fXmin > fXmax) return ("WRONG LOW REGION LIMIT"); if (fXmax < fXmin || fXmax >= size) return ("WRONG HIGH REGION LIMIT"); switch (type) { case kTransformHaar: case kTransformWalsh: working_space = new float[2 * size]; break; case kTransformCos: case kTransformSin: case kTransformFourier: case kTransformHartley: case kTransformFourierWalsh: case kTransformFourierHaar: case kTransformWalshHaar: working_space = new float[4 * size]; break; case kTransformCosWalsh: case kTransformCosHaar: case kTransformSinWalsh: case kTransformSinHaar: working_space = new float[8 * size]; break; } switch (type) { case kTransformHaar: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Haar(working_space, size, kTransformForward); break; case kTransformWalsh: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Walsh(working_space, size); BitReverse(working_space, size); break; case kTransformCos: size = 2 * size; for (i = 1; i <= (size / 2); i++) { val = source[i - 1]; working_space[i - 1] = val; working_space[size - i] = val; } Fourier(working_space, size, 0, kTransformForward, 0); for (i = 0; i < size / 2; i++) { a = pi * (double) i / (double) size; a = TMath::Cos(a); b = working_space[i]; a = b / a; working_space[i] = a; working_space[i + size] = 0; } working_space[0] = working_space[0] / TMath::Sqrt(2.0); size = size / 2; break; case kTransformSin: size = 2 * size; for (i = 1; i <= (size / 2); i++) { val = source[i - 1]; working_space[i - 1] = val; working_space[size - i] = -val; } Fourier(working_space, size, 0, kTransformForward, 0); for (i = 0; i < size / 2; i++) { a = pi * (double) i / (double) size; a = TMath::Sin(a); b = working_space[i]; if (a != 0) a = b / a; working_space[i - 1] = a; working_space[i + size] = 0; } working_space[size / 2 - 1] = working_space[size / 2] / TMath::Sqrt(2.0); size = size / 2; break; case kTransformFourier: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Fourier(working_space, size, 0, kTransformForward, 0); break; case kTransformHartley: for (i = 0; i < size; i++) { working_space[i] = source[i]; } Fourier(working_space, size, 1, kTransformForward, 0); break; case kTransformFourierWalsh: case kTransformFourierHaar: case kTransformWalshHaar: case kTransformCosWalsh: case kTransformCosHaar: case kTransformSinWalsh: case kTransformSinHaar: for (i = 0; i < size; i++) { val = source[i]; if (type == kTransformCosWalsh || type == kTransformCosHaar) { j = (int) TMath::Power(2, degree) / 2; k = i / j; k = 2 * k * j; working_space[k + i % j] = val; working_space[k + 2 * j - 1 - i % j] = val; } else if (type == kTransformSinWalsh || type == kTransformSinHaar) { j = (int) TMath::Power(2, degree) / 2; k = i / j; k = 2 * k * j; working_space[k + i % j] = val; working_space[k + 2 * j - 1 - i % j] = -val; } else working_space[i] = val; } if (type == kTransformFourierWalsh || type == kTransformFourierHaar || type == kTransformWalshHaar) { for (i = 0; i < j; i++) BitReverseHaar(working_space, size, k, i * k); GeneralExe(working_space, 0, size, degree, type); } else if (type == kTransformCosWalsh || type == kTransformCosHaar) { m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); GeneralExe(working_space, 0, 2 * size, degree, type); for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); a = TMath::Cos(a); b = working_space[k + i % j]; if (i % j == 0) a = b / TMath::Sqrt(2.0); else a = b / a; working_space[i] = a; working_space[i + 2 * size] = 0; } } else if (type == kTransformSinWalsh || type == kTransformSinHaar) { m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); GeneralExe(working_space, 0, 2 * size, degree, type); for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); a = TMath::Cos(a); b = working_space[j + k + i % j]; if (i % j == 0) a = b / TMath::Sqrt(2.0); else a = b / a; working_space[j + k / 2 - i % j - 1] = a; working_space[i + 2 * size] = 0; } } if (type > kTransformWalshHaar) k = (int) TMath::Power(2, degree - 1); else k = (int) TMath::Power(2, degree); j = size / k; for (i = 0, l = 0; i < size; i++, l = (l + k) % size) { working_space[size + i] = working_space[l + i / j]; working_space[size + i + 2 * size] = working_space[l + i / j + 2 * size]; } for (i = 0; i < size; i++) { working_space[i] = working_space[size + i]; working_space[i + 2 * size] = working_space[size + i + 2 * size]; } break; } for (i = 0, old_area = 0; i < size; i++) { old_area += working_space[i]; } for (i = 0, new_area = 0; i < size; i++) { if (i >= fXmin && i <= fXmax) working_space[i] *= enhance_coeff; new_area += working_space[i]; } if (new_area != 0) { a = old_area / new_area; for (i = 0; i < size; i++) { working_space[i] *= a; } } if (type == kTransformFourier) { for (i = 0, old_area = 0; i < size; i++) { old_area += working_space[i + size]; } for (i = 0, new_area = 0; i < size; i++) { if (i >= fXmin && i <= fXmax) working_space[i + size] *= enhance_coeff; new_area += working_space[i + size]; } if (new_area != 0) { a = old_area / new_area; for (i = 0; i < size; i++) { working_space[i + size] *= a; } } } else if (type == kTransformFourierWalsh || type == kTransformFourierHaar) { for (i = 0, old_area = 0; i < size; i++) { old_area += working_space[i + 2 * size]; } for (i = 0, new_area = 0; i < size; i++) { if (i >= fXmin && i <= fXmax) working_space[i + 2 * size] *= enhance_coeff; new_area += working_space[i + 2 * size]; } if (new_area != 0) { a = old_area / new_area; for (i = 0; i < size; i++) { working_space[i + 2 * size] *= a; } } } switch (type) { case kTransformHaar: Haar(working_space, size, kTransformInverse); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformWalsh: BitReverse(working_space, size); Walsh(working_space, size); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformCos: size = 2 * size; working_space[0] = working_space[0] * TMath::Sqrt(2.0); for (i = 0; i < size / 2; i++) { a = pi * (double) i / (double) size; b = TMath::Sin(a); a = TMath::Cos(a); working_space[i + size] = (double) working_space[i] * b; working_space[i] = (double) working_space[i] * a; } for (i = 2; i <= (size / 2); i++) { working_space[size - i + 1] = working_space[i - 1]; working_space[size - i + 1 + size] = -working_space[i - 1 + size]; } working_space[size / 2] = 0; working_space[size / 2 + size] = 0; Fourier(working_space, size, 0, kTransformInverse, 1); for (i = 0; i < size / 2; i++) { dest[i] = working_space[i]; } break; case kTransformSin: size = 2 * size; working_space[size / 2] = working_space[size / 2 - 1] * TMath::Sqrt(2.0); for (i = size / 2 - 1; i > 0; i--) { a = pi * (double) i / (double) size; working_space[i + size] = -(double) working_space[i - 1] * TMath::Cos(a); working_space[i] = (double) working_space[i - 1] * TMath::Sin(a); } for (i = 2; i <= (size / 2); i++) { working_space[size - i + 1] = working_space[i - 1]; working_space[size - i + 1 + size] = -working_space[i - 1 + size]; } working_space[0] = 0; working_space[size] = 0; working_space[size / 2 + size] = 0; Fourier(working_space, size, 0, kTransformInverse, 0); for (i = 0; i < size / 2; i++) { dest[i] = working_space[i]; } break; case kTransformFourier: Fourier(working_space, size, 0, kTransformInverse, 0); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformHartley: Fourier(working_space, size, 1, kTransformInverse, 0); for (i = 0; i < size; i++) { dest[i] = working_space[i]; } break; case kTransformFourierWalsh: case kTransformFourierHaar: case kTransformWalshHaar: case kTransformCosWalsh: case kTransformCosHaar: case kTransformSinWalsh: case kTransformSinHaar: if (type > kTransformWalshHaar) k = (int) TMath::Power(2, degree - 1); else k = (int) TMath::Power(2, degree); j = size / k; for (i = 0, l = 0; i < size; i++, l = (l + k) % size) { working_space[size + l + i / j] = working_space[i]; working_space[size + l + i / j + 2 * size] = working_space[i + 2 * size]; } for (i = 0; i < size; i++) { working_space[i] = working_space[size + i]; working_space[i + 2 * size] = working_space[size + i + 2 * size]; } if (type == kTransformFourierWalsh || type == kTransformFourierHaar || type == kTransformWalshHaar) { GeneralInv(working_space, size, degree, type); for (i = 0; i < j; i++) BitReverseHaar(working_space, size, k, i * k); } else if (type == kTransformCosWalsh || type == kTransformCosHaar) { j = (int) TMath::Power(2, degree) / 2; m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); if (i % j == 0) { working_space[2 * size + k + i % j] = working_space[i] * TMath::Sqrt(2.0); working_space[4 * size + 2 * size + k + i % j] = 0; } else { b = TMath::Sin(a); a = TMath::Cos(a); working_space[4 * size + 2 * size + k + i % j] = -(double) working_space[i] * b; working_space[2 * size + k + i % j] = (double) working_space[i] * a; } } for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; if (i % j == 0) { working_space[2 * size + k + j] = 0; working_space[4 * size + 2 * size + k + j] = 0; } else { working_space[2 * size + k + 2 * j - i % j] = working_space[2 * size + k + i % j]; working_space[4 * size + 2 * size + k + 2 * j - i % j] = -working_space[4 * size + 2 * size + k + i % j]; } } for (i = 0; i < 2 * size; i++) { working_space[i] = working_space[2 * size + i]; working_space[4 * size + i] = working_space[4 * size + 2 * size + i]; } GeneralInv(working_space, 2 * size, degree, type); m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); } else if (type == kTransformSinWalsh || type == kTransformSinHaar) { j = (int) TMath::Power(2, degree) / 2; m = (int) TMath::Power(2, degree); l = 2 * size / m; for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; a = pi * (double) (i % j) / (double) (2 * j); if (i % j == 0) { working_space[2 * size + k + j + i % j] = working_space[j + k / 2 - i % j - 1] * TMath::Sqrt(2.0); working_space[4 * size + 2 * size + k + j + i % j] = 0; } else { b = TMath::Sin(a); a = TMath::Cos(a); working_space[4 * size + 2 * size + k + j + i % j] = -(double) working_space[j + k / 2 - i % j - 1] * b; working_space[2 * size + k + j + i % j] = (double) working_space[j + k / 2 - i % j - 1] * a; } } for (i = 0; i < size; i++) { k = i / j; k = 2 * k * j; if (i % j == 0) { working_space[2 * size + k] = 0; working_space[4 * size + 2 * size + k] = 0; } else { working_space[2 * size + k + i % j] = working_space[2 * size + k + 2 * j - i % j]; working_space[4 * size + 2 * size + k + i % j] = -working_space[4 * size + 2 * size + k + 2 * j - i % j]; } } for (i = 0; i < 2 * size; i++) { working_space[i] = working_space[2 * size + i]; working_space[4 * size + i] = working_space[4 * size + 2 * size + i]; } GeneralInv(working_space, 2 * size, degree, type); for (i = 0; i < l; i++) BitReverseHaar(working_space, 2 * size, m, i * m); } for (i = 0; i < size; i++) { if (type >= kTransformCosWalsh) { k = i / j; k = 2 * k * j; val = working_space[k + i % j]; } else val = working_space[i]; dest[i] = val; } break; } delete[]working_space; return 0; }