// @(#)root/physics:$Name: $:$Id: TRotation.cxx,v 1.9 2005/09/04 09:51:19 brun Exp $ // Author: Peter Malzacher 19/06/99 //______________________________________________________________________________ //*-*-*-*-*-*-*-*-*-*-*-*The Physics Vector package *-*-*-*-*-*-*-*-*-*-*-* //*-* ========================== * //*-* The Physics Vector package consists of five classes: * //*-* - TVector2 * //*-* - TVector3 * //*-* - TRotation * //*-* - TLorentzVector * //*-* - TLorentzRotation * //*-* It is a combination of CLHEPs Vector package written by * //*-* Leif Lonnblad, Andreas Nilsson and Evgueni Tcherniaev * //*-* and a ROOT package written by Pasha Murat. * //*-* for CLHEP see: http://wwwinfo.cern.ch/asd/lhc++/clhep/ * //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* //
| xx xy xz |
| yx yy yz |
| zx zy zz |
It describes a so called active rotation, i.e. rotation of objects inside a static system of coordinates. In case you want to rotate the frame and want to know the coordinates of objects in the rotated system, you should apply the inverse rotation to the objects. If you want to transform coordinates from the rotated frame to the original frame you have to apply the direct transformation.
A rotation around a specified axis means counterclockwise rotation around
the positive direction of the axis.
There is no direct way to to set the matrix elements - to ensure that a TRotation object always describes a real rotation. But you can get the values by the member functions XX()..ZZ() or the (,) operator:
Double_t xx = r.XX(); // the
same as xx=r(0,0)
xx
= r(0,0);
if (r==m) {...} // test for equality
if (r!=m) {..} // test for inequality
if (r.IsIdentity()) {...} // test for identity
| 1 0
0 |
Rx(a) = | 0 cos(a) -sin(a) |
| 0 sin(a) cos(a)
|
| cos(a) 0 sin(a)
|
Ry(a) = | 0 1
0 |
| -sin(a) 0 cos(a) |
| cos(a) -sin(a) 0 |
Rz(a) = | sin(a) cos(a) 0 |
| 0
0 1 |
and are implemented as member functions RotateX(), RotateY()
and RotateZ():
r.RotateX(TMath::Pi()); // rotation around the x-axis
r.Rotate(TMath::Pi()/3,TVector3(3,4,5));
It is possible to find a unit vector and an angle, which describe the same rotation as the current one:
Double_t angle;
TVector3 axis;
r.GetAngleAxis(angle,axis);
TVector3 newX(0,1,0);
TVector3 newY(0,0,1);
TVector3 newZ(1,0,0);
a.RotateAxes(newX,newY,newZ);
Member functions ThetaX(), ThetaY(), ThetaZ(), PhiX(), PhiY(),PhiZ() return azimuth and polar angles of the rotated axes:
Double_t tx,ty,tz,px,py,pz;
tx= a.ThetaX();
...
pz= a.PhiZ();
r = r2 * r1;
| x' | | xx xy xz | | x |
| y' | = | yx yy yz | | y |
| z' | | zx zy zz | | z |
e.g.:
TVector3 v(1,1,1);
v = r * v;
You can also use the Transform() member function or the operator
*= of the
TVector3 class:
TVector3 v;
TRotation r;
v.Transform(r);
v *= r; //Attention v = r * v
// #include "TRotation.h" #include "TQuaternion.h" #include "TError.h" ClassImp(TRotation) #define TOLERANCE (1.0E-6) TRotation::TRotation() : fxx(1.0), fxy(0.0), fxz(0.0), fyx(0.0), fyy(1.0), fyz(0.0), fzx(0.0), fzy(0.0), fzz(1.0) {} TRotation::TRotation(const TRotation & m) : TObject(m), fxx(m.fxx), fxy(m.fxy), fxz(m.fxz), fyx(m.fyx), fyy(m.fyy), fyz(m.fyz), fzx(m.fzx), fzy(m.fzy), fzz(m.fzz) {} TRotation::TRotation(Double_t mxx, Double_t mxy, Double_t mxz, Double_t myx, Double_t myy, Double_t myz, Double_t mzx, Double_t mzy, Double_t mzz) : fxx(mxx), fxy(mxy), fxz(mxz), fyx(myx), fyy(myy), fyz(myz), fzx(mzx), fzy(mzy), fzz(mzz) {} Double_t TRotation::operator() (int i, int j) const { if (i == 0) { if (j == 0) { return fxx; } if (j == 1) { return fxy; } if (j == 2) { return fxz; } } else if (i == 1) { if (j == 0) { return fyx; } if (j == 1) { return fyy; } if (j == 2) { return fyz; } } else if (i == 2) { if (j == 0) { return fzx; } if (j == 1) { return fzy; } if (j == 2) { return fzz; } } Warning("operator()(i,j)", "bad indices (%d , %d)",i,j); return 0.0; } TRotation TRotation::operator* (const TRotation & b) const { return TRotation(fxx*b.fxx + fxy*b.fyx + fxz*b.fzx, fxx*b.fxy + fxy*b.fyy + fxz*b.fzy, fxx*b.fxz + fxy*b.fyz + fxz*b.fzz, fyx*b.fxx + fyy*b.fyx + fyz*b.fzx, fyx*b.fxy + fyy*b.fyy + fyz*b.fzy, fyx*b.fxz + fyy*b.fyz + fyz*b.fzz, fzx*b.fxx + fzy*b.fyx + fzz*b.fzx, fzx*b.fxy + fzy*b.fyy + fzz*b.fzy, fzx*b.fxz + fzy*b.fyz + fzz*b.fzz); } //_____________________________________ TRotation::TRotation(const TQuaternion & Q) { // Constructor for a rotation based on a Quaternion // if magnitude of quaternion is null, creates identity rotation // if quaternion is non-unit, creates rotation corresponding to the normalized (unit) quaternion double two_r2 = 2 * Q.fRealPart * Q.fRealPart; double two_x2 = 2 * Q.fVectorPart.X() * Q.fVectorPart.X(); double two_y2 = 2 * Q.fVectorPart.Y() * Q.fVectorPart.Y(); double two_z2 = 2 * Q.fVectorPart.Z() * Q.fVectorPart.Z(); double two_xy = 2 * Q.fVectorPart.X() * Q.fVectorPart.Y(); double two_xz = 2 * Q.fVectorPart.X() * Q.fVectorPart.Z(); double two_xr = 2 * Q.fVectorPart.X() * Q.fRealPart; double two_yz = 2 * Q.fVectorPart.Y() * Q.fVectorPart.Z(); double two_yr = 2 * Q.fVectorPart.Y() * Q.fRealPart; double two_zr = 2 * Q.fVectorPart.Z() * Q.fRealPart; // protect agains zero quaternion double mag2 = Q.QMag2(); if (mag2 > 0) { // diago + identity fxx = two_r2 + two_x2; fyy = two_r2 + two_y2; fzz = two_r2 + two_z2; // line 0 column 1 and conjugate fxy = two_xy - two_zr; fyx = two_xy + two_zr; // line 0 column 2 and conjugate fxz = two_xz + two_yr; fzx = two_xz - two_yr; // line 1 column 2 and conjugate fyz = two_yz - two_xr; fzy = two_yz + two_xr; // protect agains non-unit quaternion if (TMath::Abs(mag2-1) > 1e-10) { fxx /= mag2; fyy /= mag2; fzz /= mag2; fxy /= mag2; fyx /= mag2; fxz /= mag2; fzx /= mag2; fyz /= mag2; fzy /= mag2; } // diago : remove identity fxx -= 1; fyy -= 1; fzz -= 1; } else { // Identity fxx = fyy = fzz = 1; fxy = fyx = fxz = fzx = fyz = fzy = 0; } } TRotation & TRotation::Rotate(Double_t a, const TVector3& axis) { if (a != 0.0) { Double_t ll = axis.Mag(); if (ll == 0.0) { Warning("Rotate(angle,axis)"," zero axis"); }else{ Double_t sa = TMath::Sin(a), ca = TMath::Cos(a); Double_t dx = axis.X()/ll, dy = axis.Y()/ll, dz = axis.Z()/ll; TRotation m( ca+(1-ca)*dx*dx, (1-ca)*dx*dy-sa*dz, (1-ca)*dx*dz+sa*dy, (1-ca)*dy*dx+sa*dz, ca+(1-ca)*dy*dy, (1-ca)*dy*dz-sa*dx, (1-ca)*dz*dx-sa*dy, (1-ca)*dz*dy+sa*dx, ca+(1-ca)*dz*dz ); Transform(m); } } return *this; } TRotation & TRotation::RotateX(Double_t a) { Double_t c = TMath::Cos(a); Double_t s = TMath::Sin(a); Double_t x = fyx, y = fyy, z = fyz; fyx = c*x - s*fzx; fyy = c*y - s*fzy; fyz = c*z - s*fzz; fzx = s*x + c*fzx; fzy = s*y + c*fzy; fzz = s*z + c*fzz; return *this; } TRotation & TRotation::RotateY(Double_t a){ Double_t c = TMath::Cos(a); Double_t s = TMath::Sin(a); Double_t x = fzx, y = fzy, z = fzz; fzx = c*x - s*fxx; fzy = c*y - s*fxy; fzz = c*z - s*fxz; fxx = s*x + c*fxx; fxy = s*y + c*fxy; fxz = s*z + c*fxz; return *this; } TRotation & TRotation::RotateZ(Double_t a) { Double_t c = TMath::Cos(a); Double_t s = TMath::Sin(a); Double_t x = fxx, y = fxy, z = fxz; fxx = c*x - s*fyx; fxy = c*y - s*fyy; fxz = c*z - s*fyz; fyx = s*x + c*fyx; fyy = s*y + c*fyy; fyz = s*z + c*fyz; return *this; } TRotation & TRotation::RotateAxes(const TVector3 &newX, const TVector3 &newY, const TVector3 &newZ) { Double_t del = 0.001; TVector3 w = newX.Cross(newY); if (TMath::Abs(newZ.X()-w.X()) > del || TMath::Abs(newZ.Y()-w.Y()) > del || TMath::Abs(newZ.Z()-w.Z()) > del || TMath::Abs(newX.Mag2()-1.) > del || TMath::Abs(newY.Mag2()-1.) > del || TMath::Abs(newZ.Mag2()-1.) > del || TMath::Abs(newX.Dot(newY)) > del || TMath::Abs(newY.Dot(newZ)) > del || TMath::Abs(newZ.Dot(newX)) > del) { Warning("RotateAxes","bad axis vectors"); return *this; }else{ return Transform(TRotation(newX.X(), newY.X(), newZ.X(), newX.Y(), newY.Y(), newZ.Y(), newX.Z(), newY.Z(), newZ.Z())); } } Double_t TRotation::PhiX() const { return (fyx == 0.0 && fxx == 0.0) ? 0.0 : TMath::ATan2(fyx,fxx); } Double_t TRotation::PhiY() const { return (fyy == 0.0 && fxy == 0.0) ? 0.0 : TMath::ATan2(fyy,fxy); } Double_t TRotation::PhiZ() const { return (fyz == 0.0 && fxz == 0.0) ? 0.0 : TMath::ATan2(fyz,fxz); } Double_t TRotation::ThetaX() const { return TMath::ACos(fzx); } Double_t TRotation::ThetaY() const { return TMath::ACos(fzy); } Double_t TRotation::ThetaZ() const { return TMath::ACos(fzz); } void TRotation::AngleAxis(Double_t &angle, TVector3 &axis) const { Double_t cosa = 0.5*(fxx+fyy+fzz-1); Double_t cosa1 = 1-cosa; if (cosa1 <= 0) { angle = 0; axis = TVector3(0,0,1); }else{ Double_t x=0, y=0, z=0; if (fxx > cosa) x = TMath::Sqrt((fxx-cosa)/cosa1); if (fyy > cosa) y = TMath::Sqrt((fyy-cosa)/cosa1); if (fzz > cosa) z = TMath::Sqrt((fzz-cosa)/cosa1); if (fzy < fyz) x = -x; if (fxz < fzx) y = -y; if (fyx < fxy) z = -z; angle = TMath::ACos(cosa); axis = TVector3(x,y,z); } } TRotation & TRotation::SetXEulerAngles(Double_t phi, Double_t theta, Double_t psi) { // Rotate using the x-convention (Landau and Lifshitz, Goldstein, &c) by // doing the explicit rotations. This is slightly less efficient than // directly applying the rotation, but makes the code much clearer. My // presumption is that this code is not going to be a speed bottle neck. SetToIdentity(); RotateZ(phi); RotateX(theta); RotateZ(psi); return *this; } TRotation & TRotation::SetYEulerAngles(Double_t phi, Double_t theta, Double_t psi) { // Rotate using the y-convention. SetToIdentity(); RotateZ(phi); RotateY(theta); RotateZ(psi); return *this; } TRotation & TRotation::RotateXEulerAngles(Double_t phi, Double_t theta, Double_t psi) { TRotation euler; euler.SetXEulerAngles(phi,theta,psi); return Transform(euler); } TRotation & TRotation::RotateYEulerAngles(Double_t phi, Double_t theta, Double_t psi) { TRotation euler; euler.SetYEulerAngles(phi,theta,psi); return Transform(euler); } void TRotation::SetXPhi(Double_t phi) { SetXEulerAngles(phi,GetXTheta(),GetXPsi()); } void TRotation::SetXTheta(Double_t theta) { SetXEulerAngles(GetXPhi(),theta,GetXPsi()); } void TRotation::SetXPsi(Double_t psi) { SetXEulerAngles(GetXPhi(),GetXTheta(),psi); } void TRotation::SetYPhi(Double_t phi) { SetYEulerAngles(phi,GetYTheta(),GetYPsi()); } void TRotation::SetYTheta(Double_t theta) { SetYEulerAngles(GetYPhi(),theta,GetYPsi()); } void TRotation::SetYPsi(Double_t psi) { SetYEulerAngles(GetYPhi(),GetYTheta(),psi); } Double_t TRotation::GetXPhi(void) const { Double_t finalPhi; Double_t s2 = 1.0 - fzz*fzz; if (s2 < 0) { Warning("GetPhi()"," |fzz| > 1 "); s2 = 0; } const Double_t sinTheta = TMath::Sqrt(s2); if (sinTheta != 0) { const Double_t cscTheta = 1/sinTheta; Double_t cosAbsPhi = fzy * cscTheta; if ( TMath::Abs(cosAbsPhi) > 1 ) { // NaN-proofing Warning("GetPhi()","finds | cos phi | > 1"); cosAbsPhi = 1; } const Double_t absPhi = TMath::ACos(cosAbsPhi); if (fzx > 0) { finalPhi = absPhi; } else if (fzx < 0) { finalPhi = -absPhi; } else if (fzy > 0) { finalPhi = 0.0; } else { finalPhi = TMath::Pi(); } } else { // sinTheta == 0 so |Fzz| = 1 const Double_t absPhi = .5 * TMath::ACos (fxx); if (fxy > 0) { finalPhi = -absPhi; } else if (fxy < 0) { finalPhi = absPhi; } else if (fxx>0) { finalPhi = 0.0; } else { finalPhi = fzz * TMath::PiOver2(); } } return finalPhi; } Double_t TRotation::GetYPhi(void) const { return GetXPhi() + TMath::Pi()/2.0; } Double_t TRotation::GetXTheta(void) const { return ThetaZ(); } Double_t TRotation::GetYTheta(void) const { return ThetaZ(); } Double_t TRotation::GetXPsi(void) const { double finalPsi = 0.0; Double_t s2 = 1.0 - fzz*fzz; if (s2 < 0) { Warning("GetPsi()"," |fzz| > 1 "); s2 = 0; } const Double_t sinTheta = TMath::Sqrt(s2); if (sinTheta != 0) { const Double_t cscTheta = 1/sinTheta; Double_t cosAbsPsi = - fyz * cscTheta; if ( TMath::Abs(cosAbsPsi) > 1 ) { // NaN-proofing Warning("GetPsi()","| cos psi | > 1 "); cosAbsPsi = 1; } const Double_t absPsi = TMath::ACos(cosAbsPsi); if (fxz > 0) { finalPsi = absPsi; } else if (fxz < 0) { finalPsi = -absPsi; } else { finalPsi = (fyz < 0) ? 0 : TMath::Pi(); } } else { // sinTheta == 0 so |Fzz| = 1 Double_t absPsi = fxx; if ( TMath::Abs(fxx) > 1 ) { // NaN-proofing Warning("GetPsi()","| fxx | > 1 "); absPsi = 1; } absPsi = .5 * TMath::ACos (absPsi); if (fyx > 0) { finalPsi = absPsi; } else if (fyx < 0) { finalPsi = -absPsi; } else { finalPsi = (fxx > 0) ? 0 : TMath::PiOver2(); } } return finalPsi; } Double_t TRotation::GetYPsi(void) const { return GetXPsi() - TMath::Pi()/2; } TRotation & TRotation::SetXAxis(const TVector3& axis, const TVector3& xyPlane) { TVector3 xAxis(xyPlane); TVector3 yAxis; TVector3 zAxis(axis); MakeBasis(xAxis,yAxis,zAxis); fxx = zAxis.X(); fyx = zAxis.Y(); fzx = zAxis.Z(); fxy = xAxis.X(); fyy = xAxis.Y(); fzy = xAxis.Z(); fxz = yAxis.X(); fyz = yAxis.Y(); fzz = yAxis.Z(); return *this; } TRotation & TRotation::SetXAxis(const TVector3& axis) { TVector3 xyPlane(0.0,1.0,0.0); return SetXAxis(axis,xyPlane); } TRotation & TRotation::SetYAxis(const TVector3& axis, const TVector3& yzPlane) { TVector3 xAxis(yzPlane); TVector3 yAxis; TVector3 zAxis(axis); MakeBasis(xAxis,yAxis,zAxis); fxx = yAxis.X(); fyx = yAxis.Y(); fzx = yAxis.Z(); fxy = zAxis.X(); fyy = zAxis.Y(); fzy = zAxis.Z(); fxz = xAxis.X(); fyz = xAxis.Y(); fzz = xAxis.Z(); return *this; } TRotation & TRotation::SetYAxis(const TVector3& axis) { TVector3 yzPlane(0.0,0.0,1.0); return SetYAxis(axis,yzPlane); } TRotation & TRotation::SetZAxis(const TVector3& axis, const TVector3& zxPlane) { TVector3 xAxis(zxPlane); TVector3 yAxis; TVector3 zAxis(axis); MakeBasis(xAxis,yAxis,zAxis); fxx = xAxis.X(); fyx = xAxis.Y(); fzx = xAxis.Z(); fxy = yAxis.X(); fyy = yAxis.Y(); fzy = yAxis.Z(); fxz = zAxis.X(); fyz = zAxis.Y(); fzz = zAxis.Z(); return *this; } TRotation & TRotation::SetZAxis(const TVector3& axis) { TVector3 zxPlane(1.0,0.0,0.0); return SetZAxis(axis,zxPlane); } void TRotation::MakeBasis(TVector3& xAxis, TVector3& yAxis, TVector3& zAxis) const { // Make the zAxis into a unit variable. Double_t zmag = zAxis.Mag(); if (zmag<TOLERANCE) { Warning("MakeBasis(X,Y,Z)","non-zero Z Axis is required"); } zAxis *= (1.0/zmag); Double_t xmag = xAxis.Mag(); if (xmag<TOLERANCE*zmag) { xAxis = zAxis.Orthogonal(); xmag = 1.0; } // Find the yAxis yAxis = zAxis.Cross(xAxis)*(1.0/xmag); Double_t ymag = yAxis.Mag(); if (ymag<TOLERANCE*zmag) { yAxis = zAxis.Orthogonal(); } else { yAxis *= (1.0/ymag); } xAxis = yAxis.Cross(zAxis); }