// @(#)root/quadp:$Name:  $:$Id: TQpSolverBase.cxx,v 1.3 2004/06/09 12:23:16 brun Exp $
// Author: Eddy Offermann   May 2004

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

/*************************************************************************
 * Parts of this file are copied from the OOQP distribution and          *
 * are subject to the following license:                                 *
 *                                                                       *
 * COPYRIGHT 2001 UNIVERSITY OF CHICAGO                                  *
 *                                                                       *
 * The copyright holder hereby grants you royalty-free rights to use,    *
 * reproduce, prepare derivative works, and to redistribute this software*
 * to others, provided that any changes are clearly documented. This     *
 * software was authored by:                                             *
 *                                                                       *
 *   E. MICHAEL GERTZ      gertz@mcs.anl.gov                             *
 *   Mathematics and Computer Science Division                           *
 *   Argonne National Laboratory                                         *
 *   9700 S. Cass Avenue                                                 *
 *   Argonne, IL 60439-4844                                              *
 *                                                                       *
 *   STEPHEN J. WRIGHT     swright@cs.wisc.edu                           *
 *   Computer Sciences Department                                        *
 *   University of Wisconsin                                             *
 *   1210 West Dayton Street                                             *
 *   Madison, WI 53706   FAX: (608)262-9777                              *
 *                                                                       *
 * Any questions or comments may be directed to one of the authors.      *
 *                                                                       *
 * ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF   *
 * ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND     *
 * OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT   *
 * WITH THE DEPARTMENT OF ENERGY.                                        *
 *************************************************************************/

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// TSolverBase                                                          //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

#include "TQpSolverBase.h"

ClassImp(TQpSolverBase)

//______________________________________________________________________________
TQpSolverBase::TQpSolverBase()
{
  fSys = 0;

  fDnorm = 0.;

  // define parameters associated with the step length heuristic
  fMutol   = 1.0e-8;
  fArtol   = 1.0e-8;
  fGamma_f = 0.99;
  fGamma_a = 1.0/(1.0-fGamma_f);

  fPhi   = 0.0;

  fMaxit = 100;

  // allocate space to track the sequence of complementarity gaps,
  // residual norms, and merit functions.
  fMu_history      = new Double_t[fMaxit];
  fRnorm_history   = new Double_t[fMaxit];
  fPhi_history     = new Double_t[fMaxit];
  fPhi_min_history = new Double_t[fMaxit];
}

//______________________________________________________________________________
TQpSolverBase::TQpSolverBase(const TQpSolverBase &another) : TObject(another)
{ 
  *this = another;
}

//______________________________________________________________________________
 TQpSolverBase::~TQpSolverBase()
{
  if (fSys) { delete fSys; fSys = 0; }

  if (fMu_history) { delete [] fMu_history;      fMu_history      = 0; }
  if (fMu_history) { delete [] fRnorm_history;   fRnorm_history   = 0; }
  if (fMu_history) { delete [] fPhi_history;     fPhi_history     = 0; }
  if (fMu_history) { delete [] fPhi_min_history; fPhi_min_history = 0; }
}

//______________________________________________________________________________
 void TQpSolverBase::Start(TQpProbBase *formulation,TQpVar *iterate,TQpDataBase *prob,
                          TQpResidual *resid,TQpVar *step)
{
  this->DefStart(formulation,iterate,prob,resid,step);
}

//______________________________________________________________________________
 void TQpSolverBase::DefStart(TQpProbBase * /* formulation */,TQpVar *iterate,
                             TQpDataBase *prob,TQpResidual *resid,TQpVar *step)
{
  Double_t sdatanorm = TMath::Sqrt(fDnorm);
  Double_t a         = sdatanorm;
  Double_t b         = sdatanorm;

  iterate->InteriorPoint(a,b);
  resid->CalcResids(prob,iterate);
  resid->Set_r3_xz_alpha(iterate,0.0);
  
  fSys->Factor(prob,iterate);
  fSys->Solve(prob,iterate,resid,step);
  step->Negate();
  
  // Take the full affine scaling step
  iterate->Saxpy(step,1.0);
  // resid.CalcResids(prob,iterate); // Calc the resids if debugging.
  Double_t shift = 1.e3+2*iterate->Violation();
  iterate->ShiftBoundVariables(shift,shift);
}

//______________________________________________________________________________
 void TQpSolverBase::SteveStart(TQpProbBase * /* formulation */,
                               TQpVar *iterate,TQpDataBase *prob,
                               TQpResidual *resid,TQpVar *step)
{
  Double_t sdatanorm = TMath::Sqrt(fDnorm);
  Double_t a = 0.0;
  Double_t b = 0.0;

  iterate->InteriorPoint(a,b);

  // set the r3 component of the rhs to -(norm of data), and calculate
  // the residuals that are obtained when all values are zero.

  resid->Set_r3_xz_alpha(iterate,-sdatanorm);
  resid->CalcResids(prob,iterate);

  // next, assign 1 to all the complementary variables, so that there
  // are identities in the coefficient matrix when we do the solve.

  a = 1.0; b = 1.0;
  iterate->InteriorPoint(a,b);
  fSys->Factor(prob,iterate);
  fSys->Solve (prob,iterate,resid,step);
  step->Negate();

  // copy the "step" into the current vector

  iterate = step;

  // calculate the maximum violation of the complementarity
  // conditions, and shift these variables to restore positivity.
  Double_t shift = 1.5*iterate->Violation();
  iterate->ShiftBoundVariables(shift,shift);

  // do Mehrotra-type adjustment

  const Double_t mutemp = iterate->GetMu();
  const Double_t xsnorm = iterate->Norm1();
  const Double_t delta = 0.5*iterate->fNComplementaryVariables*mutemp/xsnorm;
  iterate->ShiftBoundVariables(delta,delta);
}

//______________________________________________________________________________
 void TQpSolverBase::DumbStart(TQpProbBase * /* formulation */,
                              TQpVar *iterate,TQpDataBase * /* prob */,
                              TQpResidual * /* resid */,TQpVar * /* step */)
{
  const Double_t sdatanorm = fDnorm;
  const Double_t a = 1.e3;
  const Double_t b = 1.e5;
  const Double_t bigstart = a*sdatanorm+b;
  iterate->InteriorPoint(bigstart,bigstart);
}

//______________________________________________________________________________
 Double_t TQpSolverBase::FinalStepLength(TQpVar *iterate,TQpVar *step)
{
  Int_t firstOrSecond;
  Double_t primalValue; Double_t primalStep; Double_t dualValue; Double_t dualStep;
  const Double_t maxAlpha = iterate->FindBlocking(step,primalValue,primalStep,
                                                  dualValue,dualStep,firstOrSecond);
  Double_t mufull = iterate->MuStep(step,maxAlpha);

  mufull /= fGamma_a;

  Double_t alpha = 1.0;
  switch (firstOrSecond) {
  case 0:
    alpha = 1; // No constraints were blocking
    break;
  case 1:
    alpha = (-primalValue+mufull/(dualValue+maxAlpha*dualStep))/primalStep;
    break;
  case 2:
    alpha = (-dualValue+mufull/(primalValue+maxAlpha*primalStep))/dualStep;
    break;
  default:
    Assert(0 && "Can't get here");
    break;
  }
  // make it at least fGamma_f * maxStep
  if (alpha < fGamma_f*maxAlpha) alpha = fGamma_f*maxAlpha;
  // back off just a touch
  alpha *= .99999999;

  return alpha;
}

//______________________________________________________________________________
 void TQpSolverBase::DoMonitor(TQpDataBase *data,TQpVar *vars,TQpResidual *resids,
                              Double_t alpha,Double_t sigma,Int_t i,Double_t mu,
                              Int_t stop_code,Int_t level)
{
  this->DefMonitor(data,vars,resids,alpha,sigma,i,mu,stop_code,level);
}

//______________________________________________________________________________
 Int_t TQpSolverBase::DoStatus(TQpDataBase *data,TQpVar *vars,TQpResidual *resids,
                              Int_t i,Double_t mu,Int_t level)
{
  return this->DefStatus(data,vars,resids,i,mu,level);
}

//______________________________________________________________________________
 Int_t TQpSolverBase::DefStatus(TQpDataBase * /* data */,TQpVar * /* vars */,
                               TQpResidual *resids,Int_t iterate,Double_t mu,Int_t /* level */)
{
  Int_t stop_code = kNOT_FINISHED;

  const Double_t gap   = TMath::Abs(resids->GetDualityGap());
  const Double_t rnorm = resids->GetResidualNorm();

  Int_t idx = iterate-1;
  if (idx <  0     ) idx = 0;
  if (idx >= fMaxit) idx = fMaxit-1;

  // store the historical record
  fMu_history[idx] = mu;
  fRnorm_history[idx] = rnorm;
  fPhi = (rnorm+gap)/fDnorm;
  fPhi_history[idx] = fPhi;

  if (idx > 0) {
    fPhi_min_history[idx] = fPhi_min_history[idx-1];
    if (fPhi < fPhi_min_history[idx]) fPhi_min_history[idx] = fPhi;
  } else
    fPhi_min_history[idx] = fPhi;

  if (iterate >= fMaxit) {
    stop_code = kMAX_ITS_EXCEEDED;
  } else if (mu <= fMutol && rnorm <= fArtol*fDnorm) {
    stop_code = kSUCCESSFUL_TERMINATION;
  }
  if (stop_code != kNOT_FINISHED)  return stop_code;

  // check infeasibility condition
  if (idx >= 10 && fPhi >= 1.e-8 && fPhi >= 1.e4*fPhi_min_history[idx]) 
    stop_code = kINFEASIBLE;
  if (stop_code != kNOT_FINISHED)  return stop_code;

  // check for unknown status: slow convergence first
  if (idx >= 30 && fPhi_min_history[idx] >= .5*fPhi_min_history[idx-30])
    stop_code = kUNKNOWN;

  if (rnorm/fDnorm > fArtol && 
     (fRnorm_history[idx]/fMu_history[idx])/(fRnorm_history[0]/fMu_history[0]) >= 1.e8) 
    stop_code = kUNKNOWN;

  return stop_code;
}

//______________________________________________________________________________
TQpSolverBase &TQpSolverBase::operator=(const TQpSolverBase &source)
{ 
  if (this != &source) {
    TObject::operator=(source);

    fSys     = source.fSys;
    fDnorm   = source.fDnorm;
    fMutol   = source.fMutol;
    fArtol   = source.fArtol;
    fGamma_f = source.fGamma_f;
    fGamma_a = source.fGamma_a;
    fPhi     = source.fPhi;
    fIter    = source.fIter;

    if (fMaxit != source.fMaxit) {
      if (fMu_history) delete [] fMu_history;
      fMu_history = new Double_t[fMaxit];
      if (fRnorm_history) delete [] fRnorm_history;
      fRnorm_history = new Double_t[fMaxit];
      if (fPhi_history) delete [] fPhi_history;
      fPhi_history = new Double_t[fMaxit];
      if (fPhi_min_history) delete [] fPhi_min_history;
      fPhi_min_history = new Double_t[fMaxit];
    }

    fMaxit = source.fMaxit;
    memcpy(fMu_history,source.fMu_history,fMaxit*sizeof(Double_t));
    memcpy(fRnorm_history,source.fRnorm_history,fMaxit*sizeof(Double_t));
    memcpy(fPhi_history,source.fPhi_history,fMaxit*sizeof(Double_t));
    memcpy(fPhi_min_history,source.fPhi_min_history,fMaxit*sizeof(Double_t));
  }
  return *this;
}


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.