// @(#)root/matrix:$Name: $:$Id: TMatrixFBase.cxx,v 1.17 2004/10/23 20:19:05 brun Exp $
// Authors: Fons Rademakers, Eddy Offermann Nov 2003
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//////////////////////////////////////////////////////////////////////////
// //
// Linear Algebra Package //
// ---------------------- //
// //
// The present package implements all the basic algorithms dealing //
// with vectors, matrices, matrix columns, rows, diagonals, etc. //
// In addition eigen-Vector analysis and several matrix decomposition //
// have been added (LU,QRH,Cholesky and SVD) . The decompositions are //
// used in matrix inversion, equation solving. //
// //
// Matrix elements are arranged in memory in a ROW-wise fashion //
// fashion . For (n x m) matrices where n*m < kSizeMax (=25 currently) //
// storage space is avaialble on the stack, thus avoiding expensive //
// allocation/deallocation of heap space . However, this introduces of //
// course kSizeMax overhead for each matrix object . If this is an //
// issue recompile with a new appropriate value (>=0) for kSizeMax //
// //
// Another way to assign and store matrix data is through Use //
// see for instance stressLinear.cxx file . //
// //
// Unless otherwise specified, matrix and vector indices always start //
// with 0, spanning up to the specified limit-1. However, there are //
// constructors to which one can specify aribtrary lower and upper //
// bounds, e.g. TMatrixF m(1,10,1,5) defines a matrix that ranges, //
// nad that can be addresses, from 1..10, 1..5 (a(1,1)..a(10,5)). //
// //
// The present package provides all facilities to completely AVOID //
// returning matrices. Use "TMatrixF A(TMatrixF::kTransposed,B);" //
// and other fancy constructors as much as possible. If one really needs//
// to return a matrix, return a TMatLazy object instead. The //
// conversion is completely transparent to the end user, e.g. //
// "TMatrixF m = THaarMatrixF(5);" and _is_ efficient. //
// //
// Since TMatrixF et al. are fully integrated in ROOT they of course //
// can be stored in a ROOT database. //
// //
// For usage examples see $ROOTSYS/test/stressLinear.cxx //
// //
// Acknowledgements //
// ---------------- //
// 1. Oleg E. Kiselyov //
// First implementations were based on the his code . We have diverged //
// quite a bit since then but the ideas/code for lazy matrix and //
// "nested function" are 100% his . //
// You can see him and his code in action at http://okmij.org/ftp //
// 2. Chris R. Birchenhall, //
// We adapted his idea of the implementation for the decomposition //
// classes instead of our messy installation of matrix inversion //
// His installation of matrix condition number, using an iterative //
// scheme using the Hage algorithm is worth looking at ! //
// Chris has a nice writeup (matdoc.ps) on his matrix classes at //
// ftp://ftp.mcc.ac.uk/pub/matclass/ //
// 3. Mark Fischler and Steven Haywood of CLHEP //
// They did the slave labor of spelling out all sub-determinants //
// for Cramer inversion of (4x4),(5x5) and (6x6) matrices //
// The stack storage for small matrices was also taken from them //
// 4. Roldan Pozo of TNT (http://math.nist.gov/tnt/) //
// He converted the EISPACK routines for the eigen-vector analysis to //
// C++ . We started with his implementation //
// 5. Siegmund Brandt (http://siux00.physik.uni-siegen.de/~brandt/datan //
// We adapted his (very-well) documented SVD routines //
// //
// How to efficiently use this package //
// ----------------------------------- //
// //
// 1. Never return complex objects (matrices or vectors) //
// Danger: For example, when the following snippet: //
// TMatrixF foo(int n) //
// { //
// TMatrixF foom(n,n); fill_in(foom); return foom; //
// } //
// TMatrixF m = foo(5); //
// runs, it constructs matrix foo:foom, copies it onto stack as a //
// return value and destroys foo:foom. Return value (a matrix) //
// from foo() is then copied over to m (via a copy constructor), //
// and the return value is destroyed. So, the matrix constructor is //
// called 3 times and the destructor 2 times. For big matrices, //
// the cost of multiple constructing/copying/destroying of objects //
// may be very large. *Some* optimized compilers can cut down on 1 //
// copying/destroying, but still it leaves at least two calls to //
// the constructor. Note, TMatLazy (see below) can construct //
// TMatrixF m "inplace", with only a _single_ call to the //
// constructor. //
// //
// 2. Use "two-address instructions" //
// "void TMatrixF::operator += (const TMatrixF &B);" //
// as much as possible. //
// That is, to add two matrices, it's much more efficient to write //
// A += B; //
// than //
// TMatrixF C = A + B; //
// (if both operand should be preserved, //
// TMatrixF C = A; C += B; //
// is still better). //
// //
// 3. Use glorified constructors when returning of an object seems //
// inevitable: //
// "TMatrixF A(TMatrixF::kTransposed,B);" //
// "TMatrixF C(A,TMatrixF::kTransposeMult,B);" //
// //
// like in the following snippet (from $ROOTSYS/test/vmatrix.cxx) //
// that verifies that for an orthogonal matrix T, T'T = TT' = E. //
// //
// TMatrixF haar = THaarMatrixF(5); //
// TMatrixF unit(TMatrixF::kUnit,haar); //
// TMatrixF haar_t(TMatrixF::kTransposed,haar); //
// TMatrixF hth(haar,TMatrixF::kTransposeMult,haar); //
// TMatrixF hht(haar,TMatrixF::kMult,haar_t); //
// TMatrixF hht1 = haar; hht1 *= haar_t; //
// VerifyMatrixIdentity(unit,hth); //
// VerifyMatrixIdentity(unit,hht); //
// VerifyMatrixIdentity(unit,hht1); //
// //
// 4. Accessing row/col/diagonal of a matrix without much fuss //
// (and without moving a lot of stuff around): //
// //
// TMatrixF m(n,n); TVectorF v(n); TMatrixFDiag(m) += 4; //
// v = TMatrixFRow(m,0); //
// TMatrixColumn m1(m,1); m1(2) = 3; // the same as m(2,1)=3; //
// Note, constructing of, say, TMatrixFDiag does *not* involve any //
// copying of any elements of the source matrix. //
// //
// 5. It's possible (and encouraged) to use "nested" functions //
// For example, creating of a Hilbert matrix can be done as follows: //
// //
// void foo(const TMatrixF &m) //
// { //
// TMatrixF m1(TMatrixF::kZero,m); //
// struct MakeHilbert : public TElementPosActionF { //
// void Operation(Float_t &element) { element = 1./(fI+fJ-1); } //
// }; //
// m1.Apply(MakeHilbert()); //
// } //
// //
// of course, using a special method THilbertMatrixF() is //
// still more optimal, but not by a whole lot. And that's right, //
// class MakeHilbert is declared *within* a function and local to //
// that function. It means one can define another MakeHilbert class //
// (within another function or outside of any function, that is, in //
// the global scope), and it still will be OK. Note, this currently //
// is not yet supported by the interpreter CINT. //
// //
// Another example is applying of a simple function to each matrix //
// element: //
// //
// void foo(TMatrixF &m,TMatrixF &m1) //
// { //
// typedef double (*dfunc_t)(double); //
// class ApplyFunction : public TElementActionF { //
// dfunc_t fFunc; //
// void Operation(Float_t &element) { element=fFunc(element); } //
// public: //
// ApplyFunction(dfunc_t func):fFunc(func) {} //
// }; //
// ApplyFunction x(TMath::Sin); //
// m.Apply(x); //
// } //
// //
// Validation code $ROOTSYS/test/vmatrix.cxx and vvector.cxx contain //
// a few more examples of that kind. //
// //
// 6. Lazy matrices: instead of returning an object return a "recipe" //
// how to make it. The full matrix would be rolled out only when //
// and where it's needed: //
// TMatrixF haar = THaarMatrixF(5); //
// THaarMatrixF() is a *class*, not a simple function. However //
// similar this looks to a returning of an object (see note #1 //
// above), it's dramatically different. THaarMatrixF() constructs a //
// TMatLazy, an object of just a few bytes long. A
// "TMatrixF(const TMatLazy &recipe)" constructor follows the //
// recipe and makes the matrix haar() right in place. No matrix //
// element is moved whatsoever! //
// //
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// //
// Matrix Base class //
// //
// matrix properties are stored here, however the data storage is part //
// of the derived classes //
// //
//////////////////////////////////////////////////////////////////////////
#include "TMatrixFBase.h"
#include "TMatrixDBase.h"
#include "TMatrixDUtils.h"
#include "TVectorF.h"
ClassImp(TMatrixFBase)
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::SetMatrixArray(const Float_t *data,Option_t *option)
{
// Copy array data to matrix . It is assumed that array is of size >= fNelems
// (=)))) fNrows*fNcols
// option indicates how the data is stored in the array:
// option =
// 'F' : column major (Fortran) m[i][j] = array[i+j*fNrows]
// else : row major (C) m[i][j] = array[i*fNcols+j] (default)
Assert(IsValid());
TString opt = option;
opt.ToUpper();
Float_t *elem = GetMatrixArray();
if (opt.Contains("F")) {
for (Int_t irow = 0; irow < fNrows; irow++) {
const Int_t off1 = irow*fNcols;
Int_t off2 = 0;
for (Int_t icol = 0; icol < fNcols; icol++) {
elem[off1+icol] = data[off2+irow];
off2 += fNrows;
}
}
}
else
memcpy(elem,data,fNelems*sizeof(Float_t));
return *this;
}
//______________________________________________________________________________
Bool_t TMatrixFBase::IsSymmetric() const
{
Assert(IsValid());
if ((fNrows != fNcols) || (fRowLwb != fColLwb))
return kFALSE;
const Float_t * const elem = GetMatrixArray();
for (Int_t irow = 0; irow < fNrows; irow++) {
const Int_t rowOff = irow*fNcols;
Int_t colOff = 0;
for (Int_t icol = 0; icol < irow; icol++) {
if (elem[rowOff+icol] != elem[colOff+irow])
return kFALSE;
colOff += fNrows;
}
}
return kTRUE;
}
//______________________________________________________________________________
void TMatrixFBase::GetMatrix2Array(Float_t *data,Option_t *option) const
{
// Copy matrix data to array . It is assumed that array is of size >= fNelems
// (=)))) fNrows*fNcols
// option indicates how the data is stored in the array:
// option =
// 'F' : column major (Fortran) array[i+j*fNrows] = m[i][j]
// else : row major (C) array[i*fNcols+j] = m[i][j] (default)
Assert(IsValid());
TString opt = option;
opt.ToUpper();
const Float_t * const elem = GetMatrixArray();
if (opt.Contains("F")) {
for (Int_t irow = 0; irow < fNrows; irow++) {
const Int_t off1 = irow*fNcols;
Int_t off2 = 0;
for (Int_t icol = 0; icol < fNcols; icol++)
data[off2+irow] = elem[off1+icol];
off2 += fNrows;
}
}
else
memcpy(data,elem,fNelems*sizeof(Float_t));
}
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::InsertRow(Int_t rown,Int_t coln,const Float_t *v,Int_t n)
{
const Int_t arown = rown-fRowLwb;
const Int_t acoln = coln-fColLwb;
const Int_t nr = (n > 0) ? n : fNcols;
if (arown >= fNrows || arown < 0) {
Error("InsertRow","row %d out of matrix range",rown);
Invalidate();
return *this;
}
if (acoln >= fNcols || acoln < 0) {
Error("InsertRow","column %d out of matrix range",coln);
Invalidate();
return *this;
}
if (acoln+nr >= fNcols || nr < 0) {
Error("InsertRow","row length %d out of range",nr);
Invalidate();
return *this;
}
const Int_t off = arown*fNcols+acoln;
Float_t * const elem = GetMatrixArray()+off;
memcpy(elem,v,nr*sizeof(Float_t));
return *this;
}
//______________________________________________________________________________
void TMatrixFBase::ExtractRow(Int_t rown,Int_t coln,Float_t *v,Int_t n) const
{
// Store in array v, n matrix elements of row rown starting at column coln
const Int_t arown = rown-fRowLwb;
const Int_t acoln = coln-fColLwb;
const Int_t nr = (n > 0) ? n : fNcols;
if (arown >= fNrows || arown < 0) {
Error("ExtractRow","row %d out of matrix range",rown);
return;
}
if (acoln >= fNcols || acoln < 0) {
Error("ExtractRow","column %d out of matrix range",coln);
return;
}
if (acoln+n >= fNcols || nr < 0) {
Error("ExtractRow","row length %d out of range",nr);
return;
}
const Int_t off = arown*fNcols+acoln;
const Float_t * const elem = GetMatrixArray()+off;
memcpy(v,elem,nr*sizeof(Double_t));
}
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::Shift(Int_t row_shift,Int_t col_shift)
{
// Shift the row index by adding row_shift and the column index by adding
// col_shift, respectively. So [rowLwb..rowUpb][colLwb..colUpb] becomes
// [rowLwb+row_shift..rowUpb+row_shift][colLwb+col_shift..colUpb+col_shift]
fRowLwb += row_shift;
fColLwb += col_shift;
return *this;
}
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::Zero()
{
Assert(IsValid());
memset(this->GetMatrixArray(),0,fNelems*sizeof(Float_t));
return *this;
}
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::Abs()
{
// Take an absolute value of a matrix, i.e. apply Abs() to each element.
Assert(IsValid());
Float_t *ep = this->GetMatrixArray();
const Float_t * const fp = ep+fNelems;
while (ep < fp) {
*ep = TMath::Abs(*ep);
ep++;
}
return *this;
}
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::Sqr()
{
// Square each element of the matrix.
Assert(IsValid());
Float_t *ep = this->GetMatrixArray();
const Float_t * const fp = ep+fNelems;
while (ep < fp) {
*ep = (*ep) * (*ep);
ep++;
}
return *this;
}
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::Sqrt()
{
// Take square root of all elements.
Assert(IsValid());
Float_t *ep = this->GetMatrixArray();
const Float_t * const fp = ep+fNelems;
while (ep < fp) {
*ep = TMath::Sqrt(*ep);
ep++;
}
return *this;
}
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::UnitMatrix()
{
// Make a unit matrix (matrix need not be a square one).
Assert(IsValid());
Float_t *ep = this->GetMatrixArray();
memset(ep,0,fNelems*sizeof(Float_t));
for (Int_t i = fRowLwb; i <= fRowLwb+fNrows-1; i++)
for (Int_t j = fColLwb; j <= fColLwb+fNcols-1; j++)
*ep++ = (i==j ? 1.0 : 0.0);
return *this;
}
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::NormByDiag(const TVectorF &v,Option_t *option)
{
// option:
// "D" : b(i,j) = a(i,j)/sqrt(abs*(v(i)*v(j))) (default)
// else : b(i,j) = a(i,j)*sqrt(abs*(v(i)*v(j))) (default)
Assert(IsValid());
Assert(v.IsValid());
const Int_t nMax = TMath::Max(fNrows,fNcols);
if (v.GetNoElements() < nMax) {
Error("NormByDiag","vector shorter than matrix diagonal");
Invalidate();
return *this;
}
TString opt(option);
opt.ToUpper();
const Int_t divide = (opt.Contains("D")) ? 1 : 0;
const Float_t *pV = v.GetMatrixArray();
Float_t *mp = this->GetMatrixArray();
if (divide) {
for (Int_t irow = 0; irow < fNrows; irow++) {
for (Int_t icol = 0; icol < fNcols; icol++) {
const Float_t val = TMath::Sqrt(TMath::Abs(pV[irow]*pV[icol]));
Assert(val != 0.0);
*mp++ /= val;
}
}
} else {
for (Int_t irow = 0; irow < fNrows; irow++) {
for (Int_t icol = 0; icol < fNcols; icol++) {
const Float_t val = TMath::Sqrt(TMath::Abs(pV[irow]*pV[icol]));
*mp++ *= val;
}
}
}
return *this;
}
//______________________________________________________________________________
Float_t TMatrixFBase::RowNorm() const
{
// Row matrix norm, MAX{ SUM{ |M(i,j)|, over j}, over i}.
// The norm is induced by the infinity vector norm.
Assert(IsValid());
const Float_t * ep = GetMatrixArray();
const Float_t * const fp = ep+fNelems;
Float_t norm = 0;
// Scan the matrix row-after-row
while (ep < fp) {
Float_t sum = 0;
// Scan a row to compute the sum
for (Int_t j = 0; j < fNcols; j++)
sum += TMath::Abs(*ep++);
norm = TMath::Max(norm,sum);
}
Assert(ep == fp);
return norm;
}
//______________________________________________________________________________
Float_t TMatrixFBase::ColNorm() const
{
// Column matrix norm, MAX{ SUM{ |M(i,j)|, over i}, over j}.
// The norm is induced by the 1 vector norm.
Assert(IsValid());
const Float_t * ep = GetMatrixArray();
const Float_t * const fp = ep+fNcols;
Float_t norm = 0;
// Scan the matrix col-after-col
while (ep < fp) {
Float_t sum = 0;
// Scan a col to compute the sum
for (Int_t i = 0; i < fNrows; i++,ep += fNcols)
sum += TMath::Abs(*ep);
ep -= fNelems-1; // Point ep to the beginning of the next col
norm = TMath::Max(norm,sum);
}
Assert(ep == fp);
return norm;
}
//______________________________________________________________________________
Float_t TMatrixFBase::E2Norm() const
{
// Square of the Euclidian norm, SUM{ m(i,j)^2 }.
Assert(IsValid());
const Float_t * ep = GetMatrixArray();
const Float_t * const fp = ep+fNelems;
Float_t sum = 0;
for ( ; ep < fp; ep++)
sum += (*ep) * (*ep);
return sum;
}
//______________________________________________________________________________
Int_t TMatrixFBase::NonZeros() const
{
// Compute the number of elements != 0.0
Assert(IsValid());
Int_t nr_nonzeros = 0;
const Float_t *ep = this->GetMatrixArray();
const Float_t * const fp = ep+fNelems;
while (ep < fp)
if (*ep++) nr_nonzeros++;
return nr_nonzeros;
}
//______________________________________________________________________________
Float_t TMatrixFBase::Sum() const
{
// Compute sum of elements
Assert(IsValid());
Float_t sum = 0.0;
const Float_t *ep = this->GetMatrixArray();
const Float_t * const fp = ep+fNelems;
while (ep < fp)
sum += *ep++;
return sum;
}
//______________________________________________________________________________
Float_t TMatrixFBase::Min() const
{
// return minimum matrix element value
Assert(IsValid());
const Float_t * const ep = this->GetMatrixArray();
const Int_t index = TMath::LocMin(fNelems,ep);
return ep[index];
}
//______________________________________________________________________________
Float_t TMatrixFBase::Max() const
{
// return maximum vector element value
Assert(IsValid());
const Float_t * const ep = this->GetMatrixArray();
const Int_t index = TMath::LocMax(fNelems,ep);
return ep[index];
}
//______________________________________________________________________________
void TMatrixFBase::Draw(Option_t *option)
{
// Draw this matrix using an intermediate histogram
// The histogram is named "TMatrixF" by default and no title
//create the hist utility manager (a plugin)
TVirtualUtilHist *util = (TVirtualUtilHist*)gROOT->GetListOfSpecials()->FindObject("R__TVirtualUtilHist");
if (!util) {
TPluginHandler *h;
if ((h = gROOT->GetPluginManager()->FindHandler("TVirtualUtilHist"))) {
if (h->LoadPlugin() == -1)
return;
h->ExecPlugin(0);
util = (TVirtualUtilHist*)gROOT->GetListOfSpecials()->FindObject("R__TVirtualUtilHist");
}
}
util->PaintMatrix(*this,option);
}
//______________________________________________________________________________
void TMatrixFBase::Print(Option_t *name) const
{
// Print the matrix as a table of elements .
if (!IsValid()) {
Error("Print","Matrix is invalid");
return;
}
printf("\n%dx%d matrix %s is as follows",fNrows,fNcols,name);
const Int_t cols_per_sheet = 5;
const Int_t ncols = fNcols;
const Int_t nrows = fNrows;
const Int_t collwb = fColLwb;
const Int_t rowlwb = fRowLwb;
for (Int_t sheet_counter = 1; sheet_counter <= ncols; sheet_counter += cols_per_sheet) {
printf("\n\n |");
for (Int_t j = sheet_counter; j < sheet_counter+cols_per_sheet && j <= ncols; j++)
printf(" %6d |",j+collwb-1);
printf("\n%s\n","------------------------------------------------------------------");
for (Int_t i = 1; i <= nrows; i++) {
printf("%4d |",i+rowlwb-1);
for (Int_t j = sheet_counter; j < sheet_counter+cols_per_sheet && j <= ncols; j++)
printf("%11.4g ",(*this)(i+rowlwb-1,j+collwb-1));
printf("\n");
}
}
printf("\n");
}
//______________________________________________________________________________
Bool_t TMatrixFBase::operator==(Float_t val) const
{
// Are all matrix elements equal to val?
Assert(IsValid());
const Float_t * ep = GetMatrixArray();
const Float_t * const fp = ep+fNelems;
for (; ep < fp; ep++)
if (!(*ep == val))
return kFALSE;
return kTRUE;
}
//______________________________________________________________________________
Bool_t TMatrixFBase::operator!=(Float_t val) const
{
// Are all matrix elements not equal to val?
Assert(IsValid());
const Float_t * ep = GetMatrixArray();
const Float_t * const fp = ep+fNelems;
for (; ep < fp; ep++)
if (!(*ep != val))
return kFALSE;
return kTRUE;
}
//______________________________________________________________________________
Bool_t TMatrixFBase::operator<(Float_t val) const
{
// Are all matrix elements < val?
Assert(IsValid());
const Float_t * ep = GetMatrixArray();
const Float_t * const fp = ep+fNelems;
for (; ep < fp; ep++)
if (!(*ep < val))
return kFALSE;
return kTRUE;
}
//______________________________________________________________________________
Bool_t TMatrixFBase::operator<=(Float_t val) const
{
// Are all matrix elements <= val?
Assert(IsValid());
const Float_t * ep = GetMatrixArray();
const Float_t * const fp = ep+fNelems;
for (; ep < fp; ep++)
if (!(*ep <= val))
return kFALSE;
return kTRUE;
}
//______________________________________________________________________________
Bool_t TMatrixFBase::operator>(Float_t val) const
{
// Are all matrix elements > val?
Assert(IsValid());
const Float_t * ep = GetMatrixArray();
const Float_t * const fp = ep+fNelems;
for (; ep < fp; ep++)
if (!(*ep > val))
return kFALSE;
return kTRUE;
}
//______________________________________________________________________________
Bool_t TMatrixFBase::operator>=(Float_t val) const
{
// Are all matrix elements >= val?
Assert(IsValid());
const Float_t * ep = GetMatrixArray();
const Float_t * const fp = ep+fNelems;
for (; ep < fp; ep++)
if (!(*ep >= val))
return kFALSE;
return kTRUE;
}
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::Apply(const TElementActionF &action)
{
Assert(IsValid());
Float_t *ep = this->GetMatrixArray();
const Float_t * const ep_last = ep+fNelems;
while (ep < ep_last)
action.Operation(*ep++);
return *this;
}
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::Apply(const TElementPosActionF &action)
{
// Apply action to each element of the matrix. To action the location
// of the current element is passed.
Assert(IsValid());
Float_t *ep = this->GetMatrixArray();
for (action.fI = fRowLwb; action.fI < fRowLwb+fNrows; action.fI++)
for (action.fJ = fColLwb; action.fJ < fColLwb+fNcols; action.fJ++)
action.Operation(*ep++);
Assert(ep == this->GetMatrixArray()+fNelems);
return *this;
}
//______________________________________________________________________________
TMatrixFBase &TMatrixFBase::Randomize(Float_t alpha,Float_t beta,Double_t &seed)
{
// randomize matrix element values
Assert(IsValid());
const Float_t scale = beta-alpha;
const Float_t shift = alpha/scale;
Float_t * ep = GetMatrixArray();
const Float_t * const fp = ep+fNelems;
while (ep < fp)
*ep++ = scale*(Drand(seed)+shift);
return *this;
}
//______________________________________________________________________________
Bool_t operator==(const TMatrixFBase &m1,const TMatrixFBase &m2)
{
// Check to see if two matrices are identical.
if (!AreCompatible(m1,m2)) return kFALSE;
return (memcmp(m1.GetMatrixArray(),m2.GetMatrixArray(),
m1.GetNoElements()*sizeof(Float_t)) == 0);
}
//______________________________________________________________________________
Float_t E2Norm(const TMatrixFBase &m1,const TMatrixFBase &m2)
{
// Square of the Euclidian norm of the difference between two matrices.
if (!AreCompatible(m1,m2)) {
::Error("E2Norm","matrices not compatible");
return -1.0;
}
const Float_t * mp1 = m1.GetMatrixArray();
const Float_t * mp2 = m2.GetMatrixArray();
const Float_t * const fmp1 = mp1+m1.GetNoElements();
Float_t sum = 0.0;
for (; mp1 < fmp1; mp1++, mp2++)
sum += (*mp1 - *mp2)*(*mp1 - *mp2);
return sum;
}
//______________________________________________________________________________
Bool_t AreCompatible(const TMatrixFBase &m1,const TMatrixFBase &m2,Int_t verbose)
{
if (!m1.IsValid()) {
if (verbose)
::Error("AreCompatible", "matrix 1 not valid");
return kFALSE;
}
if (!m2.IsValid()) {
if (verbose)
::Error("AreCompatible", "matrix 2 not valid");
return kFALSE;
}
if (m1.GetNrows() != m2.GetNrows() || m1.GetNcols() != m2.GetNcols() ||
m1.GetRowLwb() != m2.GetRowLwb() || m1.GetColLwb() != m2.GetColLwb()) {
if (verbose)
::Error("AreCompatible", "matrices 1 and 2 not compatible");
return kFALSE;
}
return kTRUE;
}
//______________________________________________________________________________
Bool_t AreCompatible(const TMatrixFBase &m1,const TMatrixDBase &m2,Int_t verbose)
{
if (!m1.IsValid()) {
if (verbose)
::Error("AreCompatible", "matrix 1 not valid");
return kFALSE;
}
if (!m2.IsValid()) {
if (verbose)
::Error("AreCompatible", "matrix 2 not valid");
return kFALSE;
}
if (m1.GetNrows() != m2.GetNrows() || m1.GetNcols() != m2.GetNcols() ||
m1.GetRowLwb() != m2.GetRowLwb() || m1.GetColLwb() != m2.GetColLwb()) {
if (verbose)
::Error("AreCompatible", "matrices 1 and 2 not compatible");
return kFALSE;
}
return kTRUE;
}
//______________________________________________________________________________
void Compare(const TMatrixFBase &m1,const TMatrixFBase &m2)
{
// Compare two matrices and print out the result of the comparison.
if (!AreCompatible(m1,m2)) {
Error("Compare(const TMatrixFBase &,const TMatrixFBase &)","matrices are incompatible");
return;
}
printf("\n\nComparison of two TMatrices:\n");
Float_t norm1 = 0; // Norm of the Matrices
Float_t norm2 = 0;
Float_t ndiff = 0; // Norm of the difference
Int_t imax = 0; // For the elements that differ most
Int_t jmax = 0;
Float_t difmax = -1;
for (Int_t i = m1.GetRowLwb(); i <= m1.GetRowUpb(); i++) {
for (Int_t j = m1.GetColLwb(); j < m1.GetColUpb(); j++) {
const Float_t mv1 = m1(i,j);
const Float_t mv2 = m2(i,j);
const Float_t diff = TMath::Abs(mv1-mv2);
if (diff > difmax) {
difmax = diff;
imax = i;
jmax = j;
}
norm1 += TMath::Abs(mv1);
norm2 += TMath::Abs(mv2);
ndiff += TMath::Abs(diff);
}
}
printf("\nMaximal discrepancy \t\t%g", difmax);
printf("\n occured at the point\t\t(%d,%d)",imax,jmax);
const Float_t mv1 = m1(imax,jmax);
const Float_t mv2 = m2(imax,jmax);
printf("\n Matrix 1 element is \t\t%g", mv1);
printf("\n Matrix 2 element is \t\t%g", mv2);
printf("\n Absolute error v2[i]-v1[i]\t\t%g", mv2-mv1);
printf("\n Relative error\t\t\t\t%g\n",
(mv2-mv1)/TMath::Max(TMath::Abs(mv2+mv1)/2,(Float_t)1e-7));
printf("\n||Matrix 1|| \t\t\t%g", norm1);
printf("\n||Matrix 2|| \t\t\t%g", norm2);
printf("\n||Matrix1-Matrix2||\t\t\t\t%g", ndiff);
printf("\n||Matrix1-Matrix2||/sqrt(||Matrix1|| ||Matrix2||)\t%g\n\n",
ndiff/TMath::Max(TMath::Sqrt(norm1*norm2),1e-7));
}
//______________________________________________________________________________
Bool_t VerifyMatrixValue(const TMatrixFBase &m,Float_t val,Int_t verbose,Float_t maxDevAllow)
{
// Validate that all elements of matrix have value val within maxDevAllow.
Assert(m.IsValid());
Int_t imax = 0;
Int_t jmax = 0;
Float_t maxDevObs = 0;
for (Int_t i = m.GetRowLwb(); i <= m.GetRowUpb(); i++) {
for (Int_t j = m.GetColLwb(); j <= m.GetColUpb(); j++) {
const Float_t dev = TMath::Abs(m(i,j)-val);
if (dev > maxDevObs) {
imax = i;
jmax = j;
maxDevObs = dev;
}
}
}
if (maxDevObs == 0)
return kTRUE;
if (verbose) {
printf("Largest dev for (%d,%d); dev = |%g - %g| = %g\n",imax,jmax,m(imax,jmax),val,maxDevObs);
if(maxDevObs > maxDevAllow)
Error("VerifyElementValue","Deviation > %g\n",maxDevAllow);
}
if(maxDevObs > maxDevAllow)
return kFALSE;
return kTRUE;
}
//______________________________________________________________________________
Bool_t VerifyMatrixIdentity(const TMatrixFBase &m1,const TMatrixFBase &m2,Int_t verbose,
Float_t maxDevAllow)
{
// Verify that elements of the two matrices are equal within MaxDevAllow .
if (!AreCompatible(m1,m2))
return kFALSE;
Int_t imax = 0;
Int_t jmax = 0;
Float_t maxDevObs = 0;
for (Int_t i = m1.GetRowLwb(); i <= m1.GetRowUpb(); i++) {
for (Int_t j = m1.GetColLwb(); j <= m1.GetColUpb(); j++) {
const Float_t dev = TMath::Abs(m1(i,j)-m2(i,j));
if (dev > maxDevObs) {
imax = i;
jmax = j;
maxDevObs = dev;
}
}
}
if (maxDevObs == 0)
return kTRUE;
if (verbose) {
printf("Largest dev for (%d,%d); dev = |%g - %g| = %g\n",
imax,jmax,m1(imax,jmax),m2(imax,jmax),maxDevObs);
if(maxDevObs > maxDevAllow)
Error("VerifyMatrixValue","Deviation > %g\n",maxDevAllow);
}
if(maxDevObs > maxDevAllow)
return kFALSE;
return kTRUE;
}
//______________________________________________________________________________
void TMatrixFBase::Streamer(TBuffer &R__b)
{
// Stream an object of class TMatrixFBase.
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 1) {
TMatrixFBase::Class()->ReadBuffer(R__b,this,R__v,R__s,R__c);
} else {
Error("TMatrixFBase::Streamer","Unknown version number: %d",R__v);
Assert(0);
}
if (R__v < 4)
MakeValid();
} else {
TMatrixFBase::Class()->WriteBuffer(R__b,this);
}
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.