// @(#)root/mlp:$Name: $:$Id: TMLPAnalyzer.cxx,v 1.14 2005/09/04 10:22:34 brun Exp $
// Author: Christophe.Delaere@cern.ch 25/04/04
/*************************************************************************
* Copyright (C) 1995-2003, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
///////////////////////////////////////////////////////////////////////////
//
// TMLPAnalyzer
//
// This utility class contains a set of tests usefull when developing
// a neural network.
// It allows you to check for unneeded variables, and to control
// the network structure.
//
///////////////////////////////////////////////////////////////////////////
#include "TSynapse.h"
#include "TNeuron.h"
#include "TMultiLayerPerceptron.h"
#include "TMLPAnalyzer.h"
#include "TTree.h"
#include "TTreeFormula.h"
#include "TEventList.h"
#include "TH1D.h"
#include "TProfile.h"
#include "THStack.h"
#include "TLegend.h"
#include "TPad.h"
#include "TCanvas.h"
#include "TGaxis.h"
#include "TRegexp.h"
#include "Riostream.h"
ClassImp(TMLPAnalyzer)
//______________________________________________________________________________
TMLPAnalyzer::~TMLPAnalyzer() {
delete fAnalysisTree;
delete fIOTree;
}
//______________________________________________________________________________
Int_t TMLPAnalyzer::GetLayers()
{
// Returns the number of layers.
TString fStructure = fNetwork->GetStructure();
return fStructure.CountChar(':')+1;
}
//______________________________________________________________________________
Int_t TMLPAnalyzer::GetNeurons(Int_t layer)
{
// Returns the number of neurons in given layer.
if(layer==1) {
TString fStructure = fNetwork->GetStructure();
TString input = TString(fStructure(0, fStructure.First(':')));
return input.CountChar(',')+1;
}
else if(layer==GetLayers()) {
TString fStructure = fNetwork->GetStructure();
TString output = TString(fStructure(fStructure.Last(':') + 1,
fStructure.Length() - fStructure.Last(':')));
return output.CountChar(',')+1;
}
else {
Int_t cnt=1;
TString fStructure = fNetwork->GetStructure();
TString hidden = TString(fStructure(fStructure.First(':') + 1,
fStructure.Last(':') - fStructure.First(':') - 1));
Int_t beg = 0;
Int_t end = hidden.Index(":", beg + 1);
Int_t num = 0;
while (end != -1) {
num = atoi(TString(hidden(beg, end - beg)).Data());
cnt++;
beg = end + 1;
end = hidden.Index(":", beg + 1);
if(layer==cnt) return num;
}
num = atoi(TString(hidden(beg, hidden.Length() - beg)).Data());
cnt++;
if(layer==cnt) return num;
}
return -1;
}
//______________________________________________________________________________
TString TMLPAnalyzer::GetNeuronFormula(Int_t idx)
{
// Returns the formula used as input for neuron (idx) in
// the first layer.
TString fStructure = fNetwork->GetStructure();
TString input = TString(fStructure(0, fStructure.First(':')));
Int_t beg = 0;
Int_t end = input.Index(",", beg + 1);
TString brName;
Int_t cnt = 0;
while (end != -1) {
brName = TString(input(beg, end - beg));
if (brName[0]=='@')
brName = brName(1,brName.Length()-1);
beg = end + 1;
end = input.Index(",", beg + 1);
if(cnt==idx) return brName;
cnt++;
}
brName = TString(input(beg, input.Length() - beg));
if (brName[0]=='@')
brName = brName(1,brName.Length()-1);
return brName;
}
//______________________________________________________________________________
const char* TMLPAnalyzer::GetInputNeuronTitle(Int_t in) {
TNeuron* neuron=(TNeuron*)fNetwork->fFirstLayer[in];
return neuron ? neuron->GetName() : "NO SUCH NEURON";
}
//______________________________________________________________________________
const char* TMLPAnalyzer::GetOutputNeuronTitle(Int_t out) {
TNeuron* neuron=(TNeuron*)fNetwork->fLastLayer[out];
return neuron ? neuron->GetName() : "NO SUCH NEURON";
}
//______________________________________________________________________________
void TMLPAnalyzer::CheckNetwork()
{
// Gives some information about the network in the terminal.
TString fStructure = fNetwork->GetStructure();
cout << "Network with structure: " << fStructure.Data() << endl;
cout << "inputs with low values in the differences plot may not be needed" << endl;
// Checks if some input variable is not needed
char var[64], sel[64];
for (Int_t i = 0; i < GetNeurons(1); i++) {
sprintf(var,"diff>>tmp%d",i);
sprintf(sel,"inNeuron==%d",i);
fAnalysisTree->Draw(var, sel, "goff");
TH1F* tmp = (TH1F*)gDirectory->Get(Form("tmp%d",i));
cout << GetInputNeuronTitle(i)
<< " -> " << tmp->GetMean()
<< " +/- " << tmp->GetRMS() << endl;
}
}
//______________________________________________________________________________
void TMLPAnalyzer::GatherInformations()
{
// Collect informations about what is usefull in the network.
// This method has to be called first when analyzing a network.
// Fills the two analysis trees.
Double_t shift = 0.1;
TTree* data = fNetwork->fData;
TEventList* test = fNetwork->fTest;
Int_t nEvents = test->GetN();
Int_t nn = GetNeurons(1);
Double_t* params = new Double_t[nn];
Double_t* rms = new Double_t[nn];
TTreeFormula** formulas = new TTreeFormula*[nn];
Int_t* index = new Int_t[nn];
TString formula;
TRegexp re("{[0-9]+}$");
Ssiz_t len = formula.Length();
Ssiz_t pos = -1;
Int_t i(0), j(0), k(0), l(0);
for(i=0; i<nn; i++){
formula = GetNeuronFormula(i);
pos = re.Index(formula,&len);
if(pos==-1 || len<3) {
formulas[i] = new TTreeFormula(Form("NF%d",this),formula,data);
index[i] = 0;
}
else {
TString newformula(formula,pos);
TString val = formula(pos+1,len-2);
formulas[i] = new TTreeFormula(Form("NF%d",this),newformula,data);
formula = newformula;
index[i] = val.Atoi();
}
TH1D tmp("tmpb", "tmpb", 1, -FLT_MAX, FLT_MAX);
data->Draw(Form("%s>>tmpb",formula.Data()),"","goff");
rms[i] = tmp.GetRMS();
}
Int_t inNeuron = 0;
Double_t diff = 0.;
if(fAnalysisTree) delete fAnalysisTree;
fAnalysisTree = new TTree("result","analysis");
fAnalysisTree->SetDirectory(0);
fAnalysisTree->Branch("inNeuron",&inNeuron,"inNeuron/I");
fAnalysisTree->Branch("diff",&diff,"diff/D");
Int_t numOutNodes=GetNeurons(GetLayers());
Double_t *outVal=new Double_t[numOutNodes];
Double_t *trueVal=new Double_t[numOutNodes];
delete fIOTree;
fIOTree=new TTree("MLP_iotree","MLP_iotree");
fIOTree->SetDirectory(0);
TString leaflist;
for (i=0; i<nn; i++)
leaflist+=Form("In%d/D:",i);
leaflist.Remove(leaflist.Length()-1);
fIOTree->Branch("In", params, leaflist);
leaflist="";
for (i=0; i<numOutNodes; i++)
leaflist+=Form("Out%d/D:",i);
leaflist.Remove(leaflist.Length()-1);
fIOTree->Branch("Out", outVal, leaflist);
leaflist="";
for (i=0; i<numOutNodes; i++)
leaflist+=Form("True%d/D:",i);
leaflist.Remove(leaflist.Length()-1);
fIOTree->Branch("True", trueVal, leaflist);
Double_t v1 = 0.;
Double_t v2 = 0.;
// Loop on the events in the test sample
for(j=0; j< nEvents; j++) {
fNetwork->GetEntry(test->GetEntry(j));
// Loop on the neurons to evaluate
for(k=0; k<GetNeurons(1); k++) {
params[k] = formulas[k]->EvalInstance(index[k]);
}
for(k=0; k<GetNeurons(GetLayers()); k++) {
outVal[k] = fNetwork->Evaluate(k,params);
trueVal[k] = ((TNeuron*)fNetwork->fLastLayer[k])->GetBranch();
}
fIOTree->Fill();
// Loop on the input neurons
for (i = 0; i < GetNeurons(1); i++) {
inNeuron = i;
diff = 0;
// Loop on the neurons in the output layer
for(l=0; l<GetNeurons(GetLayers()); l++){
params[i] += shift*rms[i];
v1 = fNetwork->Evaluate(l,params);
params[i] -= 2*shift*rms[i];
v2 = fNetwork->Evaluate(l,params);
diff += (v1-v2)*(v1-v2);
// reset to original vealue
params[i] += shift*rms[i];
}
diff = TMath::Sqrt(diff);
fAnalysisTree->Fill();
}
}
delete[] params;
delete[] rms;
delete[] outVal;
delete[] trueVal;
delete[] index;
for(i=0; i<GetNeurons(1); i++) delete formulas[i]; delete [] formulas;
fAnalysisTree->ResetBranchAddresses();
fIOTree->ResetBranchAddresses();
}
//______________________________________________________________________________
void TMLPAnalyzer::DrawDInput(Int_t i)
{
// Draws the distribution (on the test sample) of the
// impact on the network output of a small variation of
// the ith input.
char sel[64];
sprintf(sel, "inNeuron==%d", i);
fAnalysisTree->Draw("diff", sel);
}
//______________________________________________________________________________
void TMLPAnalyzer::DrawDInputs()
{
// Draws the distribution (on the test sample) of the
// impact on the network output of a small variation of
// each input.
THStack* stack = new THStack("differences","differences (impact of variables on ANN)");
TLegend* legend = new TLegend(0.75,0.75,0.95,0.95);
TH1F* tmp = NULL;
char var[64], sel[64];
for(Int_t i = 0; i < GetNeurons(1); i++) {
sprintf(var, "diff>>tmp%d", i);
sprintf(sel, "inNeuron==%d", i);
fAnalysisTree->Draw(var, sel, "goff");
tmp = (TH1F*)gDirectory->Get(Form("tmp%d",i));
tmp->SetDirectory(0);
tmp->SetLineColor(i+1);
stack->Add(tmp);
legend->AddEntry(tmp,GetInputNeuronTitle(i),"l");
}
stack->Draw("nostack");
legend->Draw();
gPad->SetLogy();
}
//______________________________________________________________________________
void TMLPAnalyzer::DrawNetwork(Int_t neuron, const char* signal, const char* bg)
{
// Draws the distribution of the neural network (using ith neuron).
// Two distributions are drawn, for events passing respectively the "signal"
// and "background" cuts. Only the test sample is used.
TTree* data = fNetwork->fData;
TEventList* test = fNetwork->fTest;
TEventList* current = data->GetEventList();
data->SetEventList(test);
THStack* stack = new THStack("__NNout_TMLPA",Form("Neural net output (neuron %d)",neuron));
TH1F *bgh = new TH1F("__bgh_TMLPA", "NN output", 50, -0.5, 1.5);
TH1F *sigh = new TH1F("__sigh_TMLPA", "NN output", 50, -0.5, 1.5);
bgh->SetDirectory(0);
sigh->SetDirectory(0);
Int_t nEvents = 0;
Int_t j=0;
// build event lists for signal and background
TEventList* signal_list = new TEventList("__tmpSig_MLPA");
TEventList* bg_list = new TEventList("__tmpBkg_MLPA");
data->Draw(">>__tmpSig_MLPA",signal,"goff");
data->Draw(">>__tmpBkg_MLPA",bg,"goff");
// fill the background
nEvents = bg_list->GetN();
for(j=0; j< nEvents; j++) {
bgh->Fill(fNetwork->Result(bg_list->GetEntry(j),neuron));
}
// fill the signal
nEvents = signal_list->GetN();
for(j=0; j< nEvents; j++) {
sigh->Fill(fNetwork->Result(signal_list->GetEntry(j),neuron));
}
// draws the result
bgh->SetLineColor(kBlue);
bgh->SetFillStyle(3008);
bgh->SetFillColor(kBlue);
sigh->SetLineColor(kRed);
sigh->SetFillStyle(3003);
sigh->SetFillColor(kRed);
bgh->SetStats(0);
sigh->SetStats(0);
stack->Add(bgh);
stack->Add(sigh);
TLegend *legend = new TLegend(.75, .80, .95, .95);
legend->AddEntry(bgh, "Background");
legend->AddEntry(sigh,"Signal");
stack->Draw("nostack");
legend->Draw();
// restore the default event list
data->SetEventList(current);
delete signal_list;
delete bg_list;
}
//______________________________________________________________________________
TProfile* TMLPAnalyzer::DrawTruthDeviation(Int_t outnode /*=0*/,
Option_t *option /*=""*/)
{
// Create a profile of the difference of the MLP output minus the
// true value for a given output node outnode, vs the true value for
// outnode, for all test data events. This method is mainly useful
// when doing regression analysis with the MLP (i.e. not classification,
// but continuous truth values).
// The resulting TProfile histogram is returned.
// It is not drawn if option "goff" is specified.
// Options are passed to TProfile::Draw
if (!fIOTree) GatherInformations();
TString pipehist=Form("MLP_truthdev_%d",outnode);
TString drawline;
drawline.Form("Out.Out%d-True.True%d:True.True%d>>",
outnode, outnode, outnode);
fIOTree->Draw(drawline+pipehist+"(20)", "", "goff prof");
TProfile* h=(TProfile*)gDirectory->Get(pipehist);
h->SetDirectory(0);
const char* title=GetOutputNeuronTitle(outnode);
if (title) {
h->SetTitle(Form("#Delta(output - truth) vs. truth for %s",
title));
h->GetXaxis()->SetTitle(title);
h->GetYaxis()->SetTitle(Form("#Delta(output - truth) for %s", title));
}
if (!strstr(option,"goff"))
h->Draw();
return h;
}
//______________________________________________________________________________
THStack* TMLPAnalyzer::DrawTruthDeviations(Option_t *option /*=""*/)
{
// Creates TProfiles of the difference of the MLP output minus the
// true value vs the true value, one for each output, filled with the
// test data events. This method is mainly useful when doing regression
// analysis with the MLP (i.e. not classification, but continuous truth
// values).
// The returned THStack contains all the TProfiles. It is drawn unless
// the option "goff" is specified.
// Options are passed to TProfile::Draw.
THStack *hs=new THStack("MLP_TruthDeviation",
"Deviation of MLP output from truth");
// leg!=0 means we're drawing
TLegend *leg=0;
if (!option || !strstr(option,"goff"))
leg=new TLegend(.4,.85,.95,.95,"#Delta(output - truth) vs. truth for:");
const char* xAxisTitle=0;
// create profile for each input neuron,
// adding them into the THStack and the TLegend
for (Int_t outnode=0; outnode<GetNeurons(GetLayers()); outnode++) {
TProfile* h=DrawTruthDeviation(outnode, "goff");
h->SetLineColor(1+outnode);
hs->Add(h, option);
if (leg) leg->AddEntry(h,GetOutputNeuronTitle(outnode));
if (!outnode)
// Xaxis title is the same for all, extract it from the first one.
xAxisTitle=h->GetXaxis()->GetTitle();
}
if (leg) {
hs->Draw("nostack");
leg->Draw();
// gotta draw before accessing the axes
hs->GetXaxis()->SetTitle(xAxisTitle);
hs->GetYaxis()->SetTitle("#Delta(output - truth)");
}
return hs;
}
//______________________________________________________________________________
TProfile* TMLPAnalyzer::DrawTruthDeviationInOut(Int_t innode,
Int_t outnode /*=0*/,
Option_t *option /*=""*/)
{
// Creates a profile of the difference of the MLP output outnode minus
// the true value of outnode vs the input value innode, for all test
// data events.
// The resulting TProfile histogram is returned.
// It is not drawn if option "goff" is specified.
// Options are passed to TProfile::Draw
if (!fIOTree) GatherInformations();
TString pipehist=Form("MLP_truthdev_i%d_o%d", innode, outnode);
TString drawline;
drawline.Form("Out.Out%d-True.True%d:In.In%d>>",
outnode, outnode, innode);
fIOTree->Draw(drawline+pipehist+"(50)", "", "goff prof");
TProfile* h=(TProfile*)gROOT->FindObject(pipehist);
h->SetDirectory(0);
const char* titleInNeuron=GetInputNeuronTitle(innode);
const char* titleOutNeuron=GetOutputNeuronTitle(outnode);
h->SetTitle(Form("#Delta(output - truth) of %s vs. input %s",
titleOutNeuron, titleInNeuron));
h->GetXaxis()->SetTitle(Form("%s", titleInNeuron));
h->GetYaxis()->SetTitle(Form("#Delta(output - truth) for %s",
titleOutNeuron));
if (!strstr(option,"goff"))
h->Draw(option);
return h;
}
//______________________________________________________________________________
THStack* TMLPAnalyzer::DrawTruthDeviationInsOut(Int_t outnode /*=0*/,
Option_t *option /*=""*/)
{
// Creates a profile of the difference of the MLP output outnode minus the
// true value of outnode vs the input value, stacked for all inputs, for
// all test data events.
// The returned THStack contains all the TProfiles. It is drawn unless
// the option "goff" is specified.
// Options are passed to TProfile::Draw.
TString sName;
sName.Form("MLP_TruthDeviationIO_%d", outnode);
const char* outputNodeTitle=GetOutputNeuronTitle(outnode);
THStack *hs=new THStack(sName,
Form("Deviation of MLP output %s from truth",
outputNodeTitle));
// leg!=0 means we're drawing.
TLegend *leg=0;
if (!option || !strstr(option,"goff"))
leg=new TLegend(.4,.75,.95,.95,
Form("#Delta(output - truth) of %s vs. input for:",
outputNodeTitle));
// create profile for each input neuron,
// adding them into the THStack and the TLegend
Int_t numInNodes=GetNeurons(1);
Int_t innode=0;
for (innode=0; innode<numInNodes; innode++) {
TProfile* h=DrawTruthDeviationInOut(innode, outnode, "goff");
h->SetLineColor(1+innode);
hs->Add(h, option);
if (leg) leg->AddEntry(h,h->GetXaxis()->GetTitle());
}
if (leg) {
hs->Draw("nostack");
leg->Draw();
// gotta draw before accessing the axes
hs->GetXaxis()->SetTitle("Input value");
hs->GetYaxis()->SetTitle(Form("#Delta(output - truth) for %s",
outputNodeTitle));
}
return hs;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.