// @(#)root/physics:$Name: $:$Id: TLorentzVector.cxx,v 1.9 2004/04/20 09:29:56 brun Exp $ // Author: Pasha Murat , Peter Malzacher 12/02/99 // Oct 8 1999: changed Warning to Error and // return fX in Double_t & operator() // Oct 20 1999: dito in Double_t operator() // Jan 25 2000: implemented as (fP,fE) instead of (fX,fY,fZ,fE) //______________________________________________________________________________ //*-*-*-*-*-*-*-*-*-*-*-*The Physics Vector package *-*-*-*-*-*-*-*-*-*-*-* //*-* ========================== * //*-* The Physics Vector package consists of five classes: * //*-* - TVector2 * //*-* - TVector3 * //*-* - TRotation * //*-* - TLorentzVector * //*-* - TLorentzRotation * //*-* It is a combination of CLHEPs Vector package written by * //*-* Leif Lonnblad, Andreas Nilsson and Evgueni Tcherniaev * //*-* and a ROOT package written by Pasha Murat. * //*-* for CLHEP see: http://wwwinfo.cern.ch/asd/lhc++/clhep/ * //*-* Adaption to ROOT by Peter Malzacher * //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* //
TLorentzVector v1; // initialized
by (0., 0., 0., 0.)
TLorentzVector v2(1., 1., 1., 1.);
TLorentzVector v3(v1);
TLorentzVector v4(TVector3(1., 2., 3.),4.);
For backward compatibility there are two constructors from an Double_t
and Float_t C array.
Double_t xx =v.X();
...
Double_t tt = v.T();
Double_t px = v.Px();
...
Double_t ee = v.E();
The components of TLorentzVector can also accessed by index:
xx = v(0); or
xx = v[0];
yy = v(1);
yy = v[1];
zz = v(2);
zz = v[2];
tt = v(3);
tt = v[3];
You can use the Vect() member function to get the vector component of TLorentzVector:
TVector3 p = v.Vect();
For setting components also two sets of member functions can be used:
SetX(),.., SetPx(),..:
v.SetX(1.); or
v.SetPx(1.);
...
...
v.SetT(1.);
v.SetE(1.);
To set more the one component by one call you can use the SetVect() function for the TVector3 part or SetXYZT(), SetPxPyPzE(). For convenience there is also a SetXYZM():
v.SetVect(TVector3(1,2,3));
v.SetXYZT(x,y,z,t);
v.SetPxPyPzE(px,py,pz,e);
v.SetXYZM(x,y,z,m); // ->
v=(x,y,z,e=Sqrt(x*x+y*y+z*z+m*m))
Double_t m, theta, cost, phi, pp, pp2, ppv2, pp2v2;
m = v.Rho();
t = v.Theta();
cost = v.CosTheta();
phi = v.Phi();
v.SetRho(10.);
v.SetTheta(TMath::Pi()*.3);
v.SetPhi(TMath::Pi());
or get infoormation about the r-coordinate in cylindrical systems:
Double_t pp, pp2, ppv2, pp2v2;
pp = v.Perp(); // get transvers component
pp2 = v.Perp2(); // get transverse component squared
ppv2 = v.Perp(v1); // get
transvers component with
// respect to another vector
pp2v2 = v.Perp(v1);
for convenience there are two more set functions SetPtEtaPhiE(pt,eta,phi,e); and SetPtEtaPhiM(pt,eta,phi,m);
v3 = -v1;
v1 = v2+v3;
v1+= v3;
v1 = v2 + v3;
v1-= v3;
if (v1 == v2) {...}
if(v1 != v3) {...}
Double_t s, s2;
s = v1.Dot(v2); // scalar
product
s = v1*v2; // scalar product
s2 = v.Mag2(); or s2 = v.M2();
s = v.Mag();
s = v.M();
Since in case of momentum and energy the magnitude has the meaning of invariant mass TLorentzVector provides the more meaningful aliases M2() and M();
The member functions Beta() and Gamma() returns beta and gamma = 1/Sqrt(1-beta*beta).
The member function Boost() performs a boost transformation from the rod frame to the original frame. BoostVector() returns a TVector3 of the spatial components divided by the time component:
TVector3 b;
v.Boost(bx,by,bz);
v.Boost(b);
b = v.BoostVector(); // b=(x/t,y/t,z/t)
Double_t pcone = v.Plus();
Double_t mcone = v.Minus();
CAVEAT: The values returned are T{+,-}Z. It is known that some authors find it easier to define these components as (T{+,-}Z)/sqrt(2). Thus check what definition is used in the physics you're working in and adapt your code accordingly.
TLorentzRotation l;
v.Transform(l);
v = l*v; or
v *= l; // Attention v = l*v
#include "TClass.h" #include "TError.h" #include "TLorentzVector.h" #include "TLorentzRotation.h" ClassImp(TLorentzVector) TLorentzVector::TLorentzVector(Double_t x, Double_t y, Double_t z, Double_t t) : fP(x,y,z), fE(t) {} TLorentzVector::TLorentzVector(const Double_t * x0) : fP(x0), fE(x0[3]) {} TLorentzVector::TLorentzVector(const Float_t * x0) : fP(x0), fE(x0[3]) {} TLorentzVector::TLorentzVector(const TVector3 & p, Double_t e) : fP(p), fE(e) {} TLorentzVector::TLorentzVector(const TLorentzVector & p) : TObject(p) , fP(p.Vect()), fE(p.T()) {} TLorentzVector::~TLorentzVector() {} Double_t TLorentzVector::operator () (int i) const { switch(i) { case kX: case kY: case kZ: return fP(i); case kT: return fE; default: Error("operator()()", "bad index (%d) returning 0",i); } return 0.; } Double_t & TLorentzVector::operator () (int i) { switch(i) { case kX: case kY: case kZ: return fP(i); case kT: return fE; default: Error("operator()()", "bad index (%d) returning &fE",i); } return fE; } void TLorentzVector::Boost(Double_t bx, Double_t by, Double_t bz) { Double_t b2 = bx*bx + by*by + bz*bz; register Double_t gamma = 1.0 / TMath::Sqrt(1.0 - b2); register Double_t bp = bx*X() + by*Y() + bz*Z(); register Double_t gamma2 = b2 > 0 ? (gamma - 1.0)/b2 : 0.0; SetX(X() + gamma2*bp*bx + gamma*bx*T()); SetY(Y() + gamma2*bp*by + gamma*by*T()); SetZ(Z() + gamma2*bp*bz + gamma*bz*T()); SetT(gamma*(T() + bp)); } Double_t TLorentzVector::Rapidity() const { return 0.5*log( (E()+Pz()) / (E()-Pz()) ); } TLorentzVector &TLorentzVector::operator *= (const TLorentzRotation & m) { return *this = m.VectorMultiplication(*this); } TLorentzVector &TLorentzVector::Transform(const TLorentzRotation & m) { return *this = m.VectorMultiplication(*this); } void TLorentzVector::Streamer(TBuffer &R__b) { // Stream an object of class TLorentzVector. Double_t x, y, z; UInt_t R__s, R__c; if (R__b.IsReading()) { Version_t R__v = R__b.ReadVersion(&R__s, &R__c); if (R__v > 3) { TLorentzVector::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c); return; } //====process old versions before automatic schema evolution if (R__v != 2) TObject::Streamer(R__b); R__b >> x; R__b >> y; R__b >> z; fP.SetXYZ(x,y,z); R__b >> fE; R__b.CheckByteCount(R__s, R__c, TLorentzVector::IsA()); } else { TLorentzVector::Class()->WriteBuffer(R__b,this); } }