// @(#)root/quadp:$Name:  $:$Id: TGondzioSolver.cxx,v 1.7 2005/09/04 09:41:03 brun Exp $
// Author: Eddy Offermann   May 2004

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

/*************************************************************************
 * Parts of this file are copied from the OOQP distribution and          *
 * are subject to the following license:                                 *
 *                                                                       *
 * COPYRIGHT 2001 UNIVERSITY OF CHICAGO                                  *
 *                                                                       *
 * The copyright holder hereby grants you royalty-free rights to use,    *
 * reproduce, prepare derivative works, and to redistribute this software*
 * to others, provided that any changes are clearly documented. This     *
 * software was authored by:                                             *
 *                                                                       *
 *   E. MICHAEL GERTZ      gertz@mcs.anl.gov                             *
 *   Mathematics and Computer Science Division                           *
 *   Argonne National Laboratory                                         *
 *   9700 S. Cass Avenue                                                 *
 *   Argonne, IL 60439-4844                                              *
 *                                                                       *
 *   STEPHEN J. WRIGHT     swright@cs.wisc.edu                           *
 *   Computer Sciences Department                                        *
 *   University of Wisconsin                                             *
 *   1210 West Dayton Street                                             *
 *   Madison, WI 53706   FAX: (608)262-9777                              *
 *                                                                       *
 * Any questions or comments may be directed to one of the authors.      *
 *                                                                       *
 * ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF   *
 * ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND     *
 * OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT   *
 * WITH THE DEPARTMENT OF ENERGY.                                        *
 *************************************************************************/

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// TGondzioSolver                                                       //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

#include "Riostream.h"
#include "TGondzioSolver.h"
#include "TQpLinSolverDens.h"

ClassImp(TGondzioSolver)

//______________________________________________________________________________
 TGondzioSolver::TGondzioSolver()
{
  fPrintlevel               = 0;
  fTsig                     = 0.0;
  fMaximum_correctors       = 0;
  fNumberGondzioCorrections = 0;

  fStepFactor0 = 0.0;
  fStepFactor1 = 0.0;
  fAcceptTol   = 0.0;
  fBeta_min    = 0.0;
  fBeta_max    = 0.0;

  fCorrector_step  = 0;
  fStep            = 0;
  fCorrector_resid = 0;
  fFactory         = 0;
}

//______________________________________________________________________________
 TGondzioSolver::TGondzioSolver(TQpProbBase *of,TQpDataBase *prob,Int_t verbose)
{
  fFactory = of;
  fStep            = fFactory->MakeVariables(prob);
  fCorrector_step  = fFactory->MakeVariables(prob);
  fCorrector_resid = fFactory->MakeResiduals(prob);

  fPrintlevel = verbose;
  fTsig       = 3.0; // the usual value for the centering exponent (tau)

  fMaximum_correctors = 3; // maximum number of Gondzio correctors

  fNumberGondzioCorrections = 0;

  // the two StepFactor constants set targets for increase in step
  // length for each corrector
  fStepFactor0 = 0.08; 
  fStepFactor1 = 1.08; 

  // accept the enhanced step if it produces a small improvement in
  // the step length
  fAcceptTol = 0.005; 

  //define the Gondzio correction box 
  fBeta_min = 0.1;  
  fBeta_max = 10.0;
}

//______________________________________________________________________________
 TGondzioSolver::TGondzioSolver(const TGondzioSolver &another) : TQpSolverBase(another)
{
  *this = another;
}

//______________________________________________________________________________
 Int_t TGondzioSolver::Solve(TQpDataBase *prob,TQpVar *iterate,TQpResidual *resid)
{
  Int_t status_code;
  Double_t alpha = 1;
  Double_t sigma = 1;

  fDnorm = prob->DataNorm();

  // initialization of (x,y,z) and factorization routine.
  fSys = fFactory->MakeLinSys(prob);
  this->Start(fFactory,iterate,prob,resid,fStep);

  fIter = 0;
  fNumberGondzioCorrections = 0; 
  Double_t mu = iterate->GetMu();

  Int_t done = 0;
  do
    {
      fIter++;
      // evaluate residuals and update algorithm status:
      resid->CalcResids(prob,iterate);

      //  termination test:
      status_code = this->DoStatus(prob,iterate,resid,fIter,mu,0);
      if (status_code != kNOT_FINISHED ) break;
      if (fPrintlevel >= 10)
        this->DoMonitor(prob,iterate,resid,alpha,sigma,fIter,mu,status_code,0);

      // *** Predictor step ***

      resid->Set_r3_xz_alpha(iterate,0.0);

      fSys->Factor(prob,iterate);
      fSys->Solve(prob,iterate,resid,fStep);
      fStep->Negate();

      alpha = iterate->StepBound(fStep);

      // calculate centering parameter 
      Double_t muaff = iterate->MuStep(fStep,alpha);
      sigma = TMath::Power(muaff/mu,fTsig);
      
      if (fPrintlevel >= 10)
        this->DoMonitor(prob,iterate,resid,alpha,sigma,fIter,mu,status_code,2);

      // *** Corrector step ***

      // form right hand side of linear system:
      resid->Add_r3_xz_alpha(fStep,-sigma*mu);

      fSys->Solve(prob,iterate,resid,fStep);
      fStep->Negate();

      // calculate distance to boundary along the Mehrotra
      // predictor-corrector step:
      alpha = iterate->StepBound(fStep);

      // prepare for Gondzio corrector loop: zero out the
      // corrector_resid structure:
      fCorrector_resid->Clear_r1r2();

      // calculate the target box:
      Double_t rmin = sigma*mu*fBeta_min;
      Double_t rmax = sigma*mu*fBeta_max;

      Int_t stopCorrections     = 0;
      fNumberGondzioCorrections = 0;

      // enter the Gondzio correction loop:
      if (fPrintlevel >= 10)
        cout << "**** Entering the correction loop ****" << endl;

      while (fNumberGondzioCorrections < fMaximum_correctors  &&
             alpha < 1.0 && !stopCorrections) {

        // copy current variables into fcorrector_step
        *fCorrector_step = *iterate;

        // calculate target steplength
        Double_t alpha_target = fStepFactor1*alpha+fStepFactor0;
        if (alpha_target > 1.0) alpha_target = 1.0;

        // add a step of this length to corrector_step
        fCorrector_step->Saxpy(fStep,alpha_target);

        // place XZ into the r3 component of corrector_resids
        fCorrector_resid->Set_r3_xz_alpha(fCorrector_step,0.0);

        // do the projection operation
        fCorrector_resid->Project_r3(rmin,rmax);

        // solve for corrector direction
        fSys->Solve(prob,iterate,fCorrector_resid,fCorrector_step);

        // add the current step to corrector_step, and calculate the
        // step to boundary along the resulting direction
        fCorrector_step->Saxpy(fStep,1.0);
        Double_t alpha_enhanced = iterate->StepBound(fCorrector_step);

        // if the enhanced step length is actually 1, make it official
        // and stop correcting
        if (alpha_enhanced == 1.0) {
          *fStep = *fCorrector_step;
          alpha = alpha_enhanced;
          fNumberGondzioCorrections++;
          stopCorrections = 1;
        } else if(alpha_enhanced >= (1.0+fAcceptTol)*alpha) {
          // if enhanced step length is significantly better than the
          // current alpha, make the enhanced step official, but maybe
          // keep correcting
          *fStep = *fCorrector_step;
          alpha = alpha_enhanced;
          fNumberGondzioCorrections++;
          stopCorrections = 0;
        } else {
          // otherwise quit the correction loop
          stopCorrections = 1;
        }
      }

      // We've finally decided on a step direction, now calculate the
      // length using Mehrotra's heuristic.x
      alpha = this->FinalStepLength(iterate,fStep);

      // alternatively, just use a crude step scaling factor.
      // alpha = 0.995 * iterate->StepBound(fStep);

      // actually take the step (at last!) and calculate the new mu

      iterate->Saxpy(fStep,alpha);
      mu = iterate->GetMu();
    } while (!done);
  
  resid->CalcResids(prob,iterate);
  if (fPrintlevel >= 10)
    this->DoMonitor(prob,iterate,resid,alpha,sigma,fIter,mu,status_code,1);

  return status_code;
}

//______________________________________________________________________________
 void TGondzioSolver::DefMonitor(TQpDataBase* /* data */,TQpVar* /* vars */,
                                TQpResidual *resid,
                                Double_t alpha,Double_t sigma,Int_t i,Double_t mu,
                                Int_t status_code,Int_t level)
{
  switch (level) {
  case 0 : case 1: { 
    cout << endl << "Duality Gap: " << resid->GetDualityGap() << endl;
    if (i > 1) {
      cout << " Number of Corrections = " << fNumberGondzioCorrections
           << " alpha = " << alpha << endl;
    }
    cout << " *** Iteration " << i << " *** " << endl;
    cout << " mu = " << mu << " relative residual norm = " 
         << resid->GetResidualNorm()/fDnorm << endl;

    if (level == 1) { 
      // Termination has been detected by the status check; print
      // appropriate message
      if (status_code == kSUCCESSFUL_TERMINATION) {
        cout << endl 
             << " *** SUCCESSFUL TERMINATION ***" 
             << endl;
      } else if (status_code == kMAX_ITS_EXCEEDED) {
        cout << endl 
             << " *** MAXIMUM ITERATIONS REACHED *** " << endl;
      } else if (status_code == kINFEASIBLE) {
        cout << endl 
             << " *** TERMINATION: PROBABLY INFEASIBLE *** " 
             << endl;
      } else if (status_code == kUNKNOWN) {
        cout << endl 
             << " *** TERMINATION: STATUS UNKNOWN *** " << endl;
      }
    }
  } break;
  case 2:
    cout << " *** sigma = " << sigma << endl;
    break;
  }
}

//______________________________________________________________________________
 TGondzioSolver::~TGondzioSolver()
{
  if (fCorrector_step)  { delete fCorrector_step;  fCorrector_step  = 0; }
  if (fStep)            { delete fStep;            fStep            = 0; }
  if (fCorrector_resid) { delete fCorrector_resid; fCorrector_resid = 0; }
}

//______________________________________________________________________________
TGondzioSolver &TGondzioSolver::operator=(const TGondzioSolver &source)
{
  if (this != &source) {
    TQpSolverBase::operator=(source);

    fPrintlevel               = source.fPrintlevel;
    fTsig                     = source.fTsig ;
    fMaximum_correctors       = source.fMaximum_correctors;
    fNumberGondzioCorrections = source.fNumberGondzioCorrections;

    fStepFactor0 = source.fStepFactor0;
    fStepFactor1 = source.fStepFactor1;
    fAcceptTol   = source.fAcceptTol;
    fBeta_min    = source.fBeta_min;
    fBeta_max    = source.fBeta_max;

    if (fCorrector_step)  delete fCorrector_step;
    if (fStep)            delete fStep;
    if (fCorrector_resid) delete fCorrector_resid;

    fCorrector_step  = new TQpVar(*source.fCorrector_step);
    fStep            = new TQpVar(*source.fStep);
    fCorrector_resid = new TQpResidual(*source.fCorrector_resid);
    fFactory         = source.fFactory;
  }
  return *this;
}


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.