// @(#)root/geom:$Name: $:$Id: TGeoHelix.cxx,v 1.1 2004/05/26 15:11:13 brun Exp $
// Author: Andrei Gheata 28/04/04
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
////////////////////////////////////////////////////////////////////////////////
// TGeoHelix - class representing a helix curve
//
// A helix is a curve defined by the following equations:
// x = (1/c) * COS(q*phi)
// y = (1/c) * SIN(q*phi)
// z = s * alfa
// where:
// c = 1/Rxy - curvature in XY plane
// phi - phi angle
// S = 2*PI*s - vertical separation between helix loops
// q = +/- 1 - (+)=left-handed, (-)=right-handed
//
// In particular, a helix describes the trajectory of a charged particle in magnetic
// field. In such case, the helix is right-handed for negative particle charge.
// To define a helix, one must define:
// - the curvature - positive defined
// - the Z step made after one full turn of the helix
// - the particle charge sign
// - the initial particle position and direction (force normalization to unit)
// - the magnetic field direction
//
// A helix provides:
// - propagation to a given Z position (in global frame)
// Double_t *point = TGeoHelix::PropagateToZ(Double_t z);
// - propagation to an arbitrary plane, returning also the new point
// - propagation in a geometry until the next crossed surface
// - computation of the total track length along a helix
#include "TGeoHelix.h"
ClassImp(TGeoHelix)
//_____________________________________________________________________________
TGeoHelix::TGeoHelix()
{
// Dummy constructor
fC = 0.;
fS = 0.;
fStep = 0.;
fPhi = 0.;
fQ = 0;
fMatrix = 0;
TObject::SetBit(kHelixNeedUpdate, kTRUE);
TObject::SetBit(kHelixStraigth, kFALSE);
TObject::SetBit(kHelixCircle, kFALSE);
}
//_____________________________________________________________________________
TGeoHelix::TGeoHelix(Double_t curvature, Double_t hstep, Int_t charge)
{
// Normal constructor
SetXYcurvature(curvature);
SetHelixStep(hstep);
SetCharge(charge);
fStep = 0.;
fPhi = 0.;
fMatrix = new TGeoHMatrix();
TObject::SetBit(kHelixNeedUpdate, kTRUE);
TObject::SetBit(kHelixStraigth, kFALSE);
TObject::SetBit(kHelixCircle, kFALSE);
}
//_____________________________________________________________________________
TGeoHelix::~TGeoHelix()
{
// Destructor
if (fMatrix) delete fMatrix;
}
//_____________________________________________________________________________
Double_t TGeoHelix::ComputeSafeStep(Double_t epsil) const
{
// Compute safe linear step that can be made such that the error
// between linear-helix extrapolation is less than EPSIL.
if (TestBit(kHelixStraigth) || fC==0.) return 1.E30;
Double_t c = GetTotalCurvature();
Double_t step = TMath::Sqrt(2.*epsil/c);
return step;
}
//_____________________________________________________________________________
void TGeoHelix::InitPoint(Double_t x0, Double_t y0, Double_t z0)
{
// Initialize coordinates of a point on the helix
fPointInit[0] = x0;
fPointInit[1] = y0;
fPointInit[2] = z0;
TObject::SetBit(kHelixNeedUpdate, kTRUE);
}
//_____________________________________________________________________________
void TGeoHelix::InitPoint (Double_t *point)
{
InitPoint(point[0], point[1], point[2]);
}
//_____________________________________________________________________________
void TGeoHelix::InitDirection(Double_t dirx, Double_t diry, Double_t dirz, Bool_t is_normalized)
{
// Initialize particle direction (tangent on the helix in initial point)
fDirInit[0] = dirx;
fDirInit[1] = diry;
fDirInit[2] = dirz;
TObject::SetBit(kHelixNeedUpdate, kTRUE);
if (is_normalized) return;
Double_t norm = 1./TMath::Sqrt(dirx*dirx+diry*diry+dirz*dirz);
for (Int_t i=0; i<3; i++) fDirInit[i] *= norm;
}
//_____________________________________________________________________________
void TGeoHelix::InitDirection(Double_t *dir, Bool_t is_normalized)
{
InitDirection(dir[0], dir[1], dir[2], is_normalized);
}
//_____________________________________________________________________________
Double_t TGeoHelix::GetTotalCurvature() const
{
// Compute helix total curvature
Double_t k = fC/(1.+fC*fC*fS*fS);
return k;
}
//_____________________________________________________________________________
void TGeoHelix::SetXYcurvature(Double_t curvature)
{
// Set XY curvature: c = 1/Rxy
fC = curvature;
TObject::SetBit(kHelixNeedUpdate, kTRUE);
if (fC < 0) {
Error("SetXYcurvature", "Curvature %f not valid. Must be positive.", fC);
return;
}
if (fC == 0) {
Warning("SetXYcurvature", "Curvature is zero. Helix is a straigth line.");
TObject::SetBit(kHelixStraigth, kTRUE);
}
}
//_____________________________________________________________________________
void TGeoHelix::SetCharge(Int_t charge)
{
// Positive charge means left-handed helix.
if (charge==0) {
Error("ctor", "charge cannot be 0 - define it positive for a left-handed helix, negative otherwise");
return;
}
Int_t q = TMath::Sign(1, charge);
if (q == fQ) return;
fQ = q;
TObject::SetBit(kHelixNeedUpdate, kTRUE);
}
//_____________________________________________________________________________
void TGeoHelix::SetField(Double_t bx, Double_t by, Double_t bz, Bool_t is_normalized)
{
// Initialize particle direction (tangent on the helix in initial point)
fB[0] = bx;
fB[1] = by;
fB[2] = bz;
TObject::SetBit(kHelixNeedUpdate, kTRUE);
if (is_normalized) return;
Double_t norm = 1./TMath::Sqrt(bx*bx+by*by+bz*bz);
for (Int_t i=0; i<3; i++) fB[i] *= norm;
}
//_____________________________________________________________________________
void TGeoHelix::SetHelixStep(Double_t step)
{
// Set Z step of the helix on a complete turn. Positive or null.
if (step < 0) {
Error("ctor", "Z step %f not valid. Must be positive.", step);
return;
}
TObject::SetBit(kHelixNeedUpdate, kTRUE);
fS = 0.5*step/TMath::Pi();
if (fS == 0.) TObject::SetBit(kHelixCircle, kTRUE);
}
//_____________________________________________________________________________
void TGeoHelix::ResetStep()
{
// Reset current point/direction to initial values
fStep = 0.;
memcpy(fPoint, fPointInit, 3*sizeof(Double_t));
memcpy(fDir, fDirInit, 3*sizeof(Double_t));
}
//_____________________________________________________________________________
void TGeoHelix::Step(Double_t step)
{
// Make a step from current point along the helix and compute new point, direction and angle
// To reach a plane/ shape boundary, one has to:
// 1. Compute the safety to the plane/boundary
// 2. Define / update a helix according local field and particle state (position, direction, charge)
// 3. Compute the magnetic safety (maximum distance for which the field can be considered constant)
// 4. Call TGeoHelix::Step() having as argument the minimum between 1. and 3.
// 5. Repeat from 1. until the step to be made is small enough.
// 6. Add to the total step the distance along a straigth line from the last point
// to the plane/shape boundary
Int_t i;
fStep += step;
if (TObject::TestBit(kHelixStraigth)) {
for (i=0; i<3; i++) {
fPoint[i] = fPointInit[i]+fStep*fDirInit[i];
fDir[i] = fDirInit[i];
}
return;
}
if (TObject::TestBit(kHelixNeedUpdate)) UpdateHelix();
Double_t r = 1./fC;
fPhi = fStep/TMath::Sqrt(r*r+fS*fS);
Double_t vect[3];
vect[0] = r * TMath::Cos(fPhi);
vect[1] = -fQ * r * TMath::Sin(fPhi);
vect[2] = fS * fPhi;
fMatrix->LocalToMaster(vect, fPoint);
Double_t ddb = fDirInit[0]*fB[0]+fDirInit[1]*fB[1]+fDirInit[2]*fB[2];
Double_t f = -TMath::Sqrt(1.-ddb*ddb);
vect[0] = f*TMath::Sin(fPhi);
vect[1] = fQ*f*TMath::Cos(fPhi);
vect[2] = ddb;
fMatrix->LocalToMasterVect(vect, fDir);
}
//_____________________________________________________________________________
Double_t TGeoHelix::StepToPlane(Double_t *point, Double_t *norm)
{
// Propagate initial point up to a given Z position in MARS.
Double_t step = 0.;
Double_t snext = 1.E30;
Double_t dx, dy, dz;
Double_t ddn, pdn;
if (TObject::TestBit(kHelixNeedUpdate)) UpdateHelix();
dx = point[0] - fPoint[0];
dy = point[1] - fPoint[1];
dz = point[2] - fPoint[2];
pdn = dx*norm[0]+dy*norm[1]+dz*norm[2];
ddn = fDir[0]*norm[0]+fDir[1]*norm[1]+fDir[2]*norm[2];
if (TObject::TestBit(kHelixStraigth)) {
// propagate straigth line to plane
if ((pdn*ddn) <= 0) return snext;
snext = pdn/ddn;
Step(snext);
return snext;
}
Double_t r = 1./fC;
Double_t dist;
Double_t safety = TMath::Abs(pdn);
Double_t safestep = ComputeSafeStep();
snext = 1.E30;
Bool_t approaching = (ddn*pdn>0)?kTRUE:kFALSE;
if (approaching) snext = pdn/ddn;
else if (safety > 2.*r) return snext;
while (snext > safestep) {
dist = TMath::Max(safety, safestep);
Step(dist);
step += dist;
dx = point[0] - fPoint[0];
dy = point[1] - fPoint[1];
dz = point[2] - fPoint[2];
pdn = dx*norm[0]+dy*norm[1]+dz*norm[2];
ddn = fDir[0]*norm[0]+fDir[1]*norm[1]+fDir[2]*norm[2];
safety = TMath::Abs(pdn);
approaching = (ddn*pdn>0)?kTRUE:kFALSE;
snext = 1.E30;
if (approaching) snext = pdn/ddn;
else if (safety > 2.*r) {
ResetStep();
return snext;
}
}
step += snext;
Step(snext);
return step;
}
//_____________________________________________________________________________
void TGeoHelix::UpdateHelix()
{
// Update the local helix matrix.
TObject::SetBit(kHelixNeedUpdate, kFALSE);
fStep = 0.;
memcpy(fPoint, fPointInit, 3*sizeof(Double_t));
memcpy(fDir, fDirInit, 3*sizeof(Double_t));
Double_t rot[9];
Double_t tr[3];
Double_t ddb = fDirInit[0]*fB[0]+fDirInit[1]*fB[1]+fDirInit[2]*fB[2];
if ((1.-TMath::Abs(ddb))<1E-10 || fC==0) {
// helix is just a straigth line
TObject::SetBit(kHelixStraigth, kTRUE);
*fMatrix = gGeoIdentity;
return;
}
rot[2] = fB[0];
rot[5] = fB[1];
rot[8] = fB[2];
if (ddb < 0) fS = -TMath::Abs(fS);
Double_t fy = - fQ*TMath::Sqrt(1.-ddb*ddb);
fy = 1./fy;
rot[1] = fy*(fDirInit[0]-fB[0]*ddb);
rot[4] = fy*(fDirInit[1]-fB[1]*ddb);
rot[7] = fy*(fDirInit[2]-fB[2]*ddb);
rot[0] = rot[4]*rot[8] - rot[7]*rot[5];
rot[3] = rot[7]*rot[2] - rot[1]*rot[8];
rot[6] = rot[1]*rot[5] - rot[4]*rot[2];
tr[0] = fPointInit[0] - rot[0]/fC;
tr[1] = fPointInit[1] - rot[3]/fC;
tr[2] = fPointInit[2] - rot[6]/fC;
fMatrix->SetTranslation(tr);
fMatrix->SetRotation(rot);
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.