// @(#)root/gl:$Name: $:$Id: TGLBoundingBox.cxx,v 1.12 2005/08/30 10:29:52 brun Exp $
// Author: Richard Maunder 25/05/2005
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
// TODO: Function descriptions
// TODO: Class def - same as header
#include "TGLBoundingBox.h"
#include "TGLIncludes.h"
#include "Riostream.h"
ClassImp(TGLBoundingBox)
//______________________________________________________________________________
TGLBoundingBox::TGLBoundingBox()
{
// Construct an empty bounding box
SetEmpty();
}
//______________________________________________________________________________
TGLBoundingBox::TGLBoundingBox(const TGLVertex3 vertex[8])
{
// Construct a bounding box from provided 8 vertices
Set(vertex);
}
//______________________________________________________________________________
TGLBoundingBox::TGLBoundingBox(const Double_t vertex[8][3])
{
// Construct a bounding box from provided 8 vertices
Set(vertex);
}
//______________________________________________________________________________
TGLBoundingBox::TGLBoundingBox(const TGLVertex3 & lowVertex, const TGLVertex3 & highVertex)
{
// Construct an global axis ALIGNED bounding box from provided low/high vertex pair
SetAligned(lowVertex, highVertex);
}
//______________________________________________________________________________
TGLBoundingBox::TGLBoundingBox(const TGLBoundingBox & other)
{
// Construct a bounding box as copy of existing one
Set(other);
}
//______________________________________________________________________________
TGLBoundingBox::~TGLBoundingBox()
{
// Destroy bounding box
}
//______________________________________________________________________________
void TGLBoundingBox::UpdateCache()
{
// Update the internal cached volume and axes vectors
// y
// |
// |
// |________x
// / 3-------2
// / /| /|
// z 7-------6 |
// | 0-----|-1
// |/ |/
// 4-------5
//
// Do axes first so Extents() is correct
fAxes[0].Set(fVertex[1] - fVertex[0]);
fAxes[1].Set(fVertex[3] - fVertex[0]);
fAxes[2].Set(fVertex[4] - fVertex[0]);
// Sometimes have zero volume BB due to single zero magnitude
// axis record and try to fix below
Bool_t fixZeroMagAxis = kFALSE;
Int_t zeroMagAxisInd = -1;
for (UInt_t i = 0; i<3; i++) {
fAxesNorm[i] = fAxes[i];
Double_t mag = fAxesNorm[i].Mag();
if (mag > 0.0) {
fAxesNorm[i] /= mag;
} else {
if (!fixZeroMagAxis && zeroMagAxisInd == -1) {
zeroMagAxisInd = i;
fixZeroMagAxis = kTRUE;
} else if (fixZeroMagAxis) {
fixZeroMagAxis = kFALSE;
}
}
}
// Try to cope with a zero volume bounding box where one
// axis is zero by using cross product of other two
if (fixZeroMagAxis) {
fAxesNorm[zeroMagAxisInd] = Cross(fAxesNorm[(zeroMagAxisInd+1)%3],
fAxesNorm[(zeroMagAxisInd+2)%3]);
}
TGLVector3 extents = Extents();
fVolume = fabs(extents.X() * extents.Y() * extents.Z());
}
//______________________________________________________________________________
void TGLBoundingBox::Set(const TGLVertex3 vertex[8])
{
// Set a bounding box from provided 8 verticies
for (UInt_t v = 0; v < 8; v++) {
fVertex[v] = vertex[v];
}
// Could change cached volume/axes
UpdateCache();
}
//______________________________________________________________________________
void TGLBoundingBox::Set(const Double_t vertex[8][3])
{
// Set a bounding box from provided 8 verticies
for (UInt_t v = 0; v < 8; v++) {
for (UInt_t a = 0; a < 3; a++) {
fVertex[v][a] = vertex[v][a];
}
}
// Could change cached volume/axes
UpdateCache();
}
//______________________________________________________________________________
void TGLBoundingBox::Set(const TGLBoundingBox & other)
{
// Set a bounding box from verticies of other
for (UInt_t v = 0; v < 8; v++) {
fVertex[v].Set(other.fVertex[v]);
}
// Could change cached volume/axes
UpdateCache();
}
//______________________________________________________________________________
void TGLBoundingBox::SetEmpty()
{
// Set bounding box empty - all vertexes at (0,0,0)
for (UInt_t v = 0; v < 8; v++) {
fVertex[v].Fill(0.0);
}
// Could change cached volume/axes
UpdateCache();
}
//______________________________________________________________________________
void TGLBoundingBox::SetAligned(const TGLVertex3 & lowVertex, const TGLVertex3 & highVertex)
{
// Set ALIGNED box from two low/high vertices. Box axes are aligned with
// global frame axes that verticies are specified in.
// lowVertex = vertex[0]
// highVertex = vertex[6]
//
// y
// |
// |
// |________x
// / 3-------2
// / /| /|
// z 7-------6 |
// | 0-----|-1
// |/ |/
// 4-------5
//
TGLVector3 diff = highVertex - lowVertex;
fVertex[0] = lowVertex;
fVertex[1] = lowVertex; fVertex[1].X() += diff.X();
fVertex[2] = lowVertex; fVertex[2].X() += diff.X(); fVertex[2].Y() += diff.Y();
fVertex[3] = lowVertex; fVertex[3].Y() += diff.Y();
fVertex[4] = highVertex; fVertex[4].X() -= diff.X(); fVertex[4].Y() -= diff.Y();
fVertex[5] = highVertex; fVertex[5].Y() -= diff.Y();
fVertex[6] = highVertex;
fVertex[7] = highVertex; fVertex[7].X() -= diff.X();
// Could change cached volume/axes
UpdateCache();
}
//______________________________________________________________________________
void TGLBoundingBox::SetAligned(UInt_t nbPnts, const Double_t * pnts)
{
// Set ALIGNED box from one or more points. Box axes are aligned with
// global frame axes that points are specified in.
if (nbPnts < 1 || !pnts) {
assert(false);
return;
}
// Single point gives a zero volume BB
TGLVertex3 low(pnts[0], pnts[1], pnts[2]);
TGLVertex3 high(pnts[0], pnts[1], pnts[2]);
for (UInt_t p = 1; p < nbPnts; p++) {
for (UInt_t i = 0; i < 3; i++) {
if (pnts[3*p + i] < low[i]) {
low[i] = pnts[3*p + i] ;
}
if (pnts[3*p + i] > high[i]) {
high[i] = pnts[3*p + i] ;
}
}
}
SetAligned(low, high);
}
//______________________________________________________________________________
void TGLBoundingBox::Scale(Double_t factor)
{
// Isotropically scale bounding box along it's LOCAL axes, preserving center
Scale(factor, factor, factor);
// Could change cached volume/axes
UpdateCache();
}
//______________________________________________________________________________
void TGLBoundingBox::Scale(Double_t xFactor, Double_t yFactor, Double_t zFactor)
{
// Asymetrically scale box along it's LOCAL x,y,z axes, preserving center
// Get x,y,z edges (non-normalised axis) and scale
// them by factors
const TGLVector3 xOffset = Axis(0, kFALSE)*(xFactor - 1.0) / 2.0;
const TGLVector3 yOffset = Axis(1, kFALSE)*(yFactor - 1.0) / 2.0;
const TGLVector3 zOffset = Axis(2, kFALSE)*(zFactor - 1.0) / 2.0;
// y
// |
// |
// |________x
// / 3-------2
// / /| /|
// z 7-------6 |
// | 0-----|-1
// |/ |/
// 4-------5
//
fVertex[0] += -xOffset - yOffset - zOffset;
fVertex[1] += xOffset - yOffset - zOffset;
fVertex[2] += xOffset + yOffset - zOffset;
fVertex[3] += -xOffset + yOffset - zOffset;
fVertex[4] += -xOffset - yOffset + zOffset;
fVertex[5] += xOffset - yOffset + zOffset;
fVertex[6] += xOffset + yOffset + zOffset;
fVertex[7] += -xOffset + yOffset + zOffset;
// Could change cached volume/axes
UpdateCache();
}
//______________________________________________________________________________
void TGLBoundingBox::Translate(const TGLVector3 & offset)
{
// Translate all vertexes by offset
for (UInt_t v = 0; v < 8; v++) {
fVertex[v] = fVertex[v] + offset;
}
// No cache change - volume and axes vectors remain same
}
//______________________________________________________________________________
void TGLBoundingBox::Transform(const TGLMatrix & matrix)
{
// Transform all vertexes with matrix
for (UInt_t v = 0; v < 8; v++) {
matrix.TransformVertex(fVertex[v]);
}
// Could change cached volume/axes
UpdateCache();
}
//______________________________________________________________________________
EOverlap TGLBoundingBox::Overlap(const TGLPlane & plane) const
{
// Find overlap (Inside, Outside, Partial) of plane c.f. bounding box
// TODO: Cheaper sphere test
// Test all 8 box vertices against plane
Int_t verticesInsidePlane = 8;
for (UInt_t v = 0; v < 8; v++) {
if (plane.DistanceTo(fVertex[v]) < 0.0) {
verticesInsidePlane--;
}
}
if ( verticesInsidePlane == 0 ) {
return kOutside;
} else if ( verticesInsidePlane == 8 ) {
return kInside;
} else {
return kPartial;
}
}
//______________________________________________________________________________
EOverlap TGLBoundingBox::Overlap(const TGLBoundingBox & other) const
{
// Find overlap (Inside, Outside, Partial) of other bounding box c.f. us
// Simplify code with refs
const TGLBoundingBox & a = *this;
const TGLBoundingBox & b = other;
TGLVector3 aHL = a.Extents() / 2.0; // Half length extents
TGLVector3 bHL = b.Extents() / 2.0; // Half length extents
// Following tests are greatly simplified
// if we convert into our local frame
// Find translation in parent frame
TGLVector3 parentT = b.Center() - a.Center();
// First: Do a simple & cheap sphere approximation containment test.
// In many uses b will be completely contained by a and very much smaller
// these cases short circuited here
// We need the inner sphere for the container (box a) - radius = shortest box half length
Double_t aSphereRadius = aHL[0] < aHL[1] ? aHL[0] : aHL[1];
if (aHL[2] < aSphereRadius) {
aSphereRadius = aHL[2];
}
// and the outer sphere for containee (box b) - radius = box diagonal
Double_t bSphereRadius = bHL.Mag();
// If b sphere radius + translation mag is smaller than b sphere radius
// b is complete contained by a
if (bSphereRadius + parentT.Mag() < aSphereRadius) {
return kInside;
}
// Second: Perform more expensive 15 seperating axes test
// Find translation in A's frame
TGLVector3 aT(Dot(parentT, a.Axis(0)), Dot(parentT, a.Axis(1)), Dot(parentT, a.Axis(2)));
// Find B's basis with respect to A's local frame
// Get rotation matrix
Double_t roaT[3][3];
UInt_t i, k;
for (i=0 ; i<3 ; i++) {
for (k=0; k<3; k++) {
roaT[i][k] = Dot(a.Axis(i), b.Axis(k));
// Force very small components to zero to avoid rounding errors
if (fabs(roaT[i][k]) < 1e-14) {
roaT[i][k] = 0.0;
}
}
// Normalise columns to avoid rounding errors
Double_t norm = sqrt(roaT[i][0]*roaT[i][0] + roaT[i][1]*roaT[i][1] + roaT[i][2]*roaT[i][2]);
roaT[i][0] /= norm; roaT[i][1] /= norm; roaT[i][2] /= norm;
}
// Perform separating axis test for all 15 potential
// axes. If no separating axes found, the two boxes overlap.
Double_t ra, rb, t;
// A's 3 basis vectors
for (i=0; i<3; i++) {
ra = aHL[i];
rb = bHL[0]*fabs(roaT[i][0]) + bHL[1]*fabs(roaT[i][1]) + bHL[2]*fabs(roaT[i][2]);
t = fabs(aT[i]);
if (t > ra + rb)
return kOutside;
else if (ra < t + rb)
return kPartial;
}
// B's 3 basis vectors
for (k=0; k<3; k++) {
ra = aHL[0]*fabs(roaT[0][k]) + aHL[1]*fabs(roaT[1][k]) + aHL[2]*fabs(roaT[2][k]);
rb = bHL[k];
t = fabs(aT[0]*roaT[0][k] + aT[1]*roaT[1][k] + aT[2]*roaT[2][k]);
if (t > ra + rb)
return kOutside;
else if (ra < t + rb)
return kPartial;
}
// Now the 9 cross products
// A0 x B0
ra = aHL[1]*fabs(roaT[2][0]) + aHL[2]*fabs(roaT[1][0]);
rb = bHL[1]*fabs(roaT[0][2]) + bHL[2]*fabs(roaT[0][1]);
t = fabs(aT[2]*roaT[1][0] - aT[1]*roaT[2][0]);
if (t > ra + rb)
return kOutside;
else if (ra < t + rb)
return kPartial;
// A0 x B1
ra = aHL[1]*fabs(roaT[2][1]) + aHL[2]*fabs(roaT[1][1]);
rb = bHL[0]*fabs(roaT[0][2]) + bHL[2]*fabs(roaT[0][0]);
t = fabs(aT[2]*roaT[1][1] - aT[1]*roaT[2][1]);
if (t > ra + rb)
return kOutside;
else if (ra < t + rb)
return kPartial;
// A0 x B2
ra = aHL[1]*fabs(roaT[2][2]) + aHL[2]*fabs(roaT[1][2]);
rb = bHL[0]*fabs(roaT[0][1]) + bHL[1]*fabs(roaT[0][0]);
t = fabs(aT[2]*roaT[1][2] - aT[1]*roaT[2][2]);
if (t > ra + rb)
return kOutside;
else if (ra < t + rb)
return kPartial;
// A1 x B0
ra = aHL[0]*fabs(roaT[2][0]) + aHL[2]*fabs(roaT[0][0]);
rb = bHL[1]*fabs(roaT[1][2]) + bHL[2]*fabs(roaT[1][1]);
t = fabs(aT[0]*roaT[2][0] - aT[2]*roaT[0][0]);
if (t > ra + rb)
return kOutside;
else if (ra < t + rb)
return kPartial;
// A1 x B1
ra = aHL[0]*fabs(roaT[2][1]) + aHL[2]*fabs(roaT[0][1]);
rb = bHL[0]*fabs(roaT[1][2]) + bHL[2]*fabs(roaT[1][0]);
t = fabs(aT[0]*roaT[2][1] - aT[2]*roaT[0][1]);
if (t > ra + rb)
return kOutside;
else if (ra < t + rb)
return kPartial;
// A1 x B2
ra = aHL[0]*fabs(roaT[2][2]) + aHL[2]*fabs(roaT[0][2]);
rb = bHL[0]*fabs(roaT[1][1]) + bHL[1]*fabs(roaT[1][0]);
t = fabs(aT[0]*roaT[2][2] - aT[2]*roaT[0][2]);
if (t > ra + rb)
return kOutside;
else if (ra < t + rb)
return kPartial;
// A2 x B0
ra = aHL[0]*fabs(roaT[1][0]) + aHL[1]*fabs(roaT[0][0]);
rb = bHL[1]*fabs(roaT[2][2]) + bHL[2]*fabs(roaT[2][1]);
t = fabs(aT[1]*roaT[0][0] - aT[0]*roaT[1][0]);
if (t > ra + rb)
return kOutside;
else if (ra < t + rb)
return kPartial;
// A2 x B1
ra = aHL[0]*fabs(roaT[1][1]) + aHL[1]*fabs(roaT[0][1]);
rb = bHL[0]*fabs(roaT[2][2]) + bHL[2]*fabs(roaT[2][0]);
t = fabs(aT[1]*roaT[0][1] - aT[0]*roaT[1][1]);
if (t > ra + rb)
return kOutside;
else if (ra < t + rb)
return kPartial;
// A2 x B2
ra = aHL[0]*fabs(roaT[1][2]) + aHL[1]*fabs(roaT[0][2]);
rb = bHL[0]*fabs(roaT[2][1]) + bHL[1]*fabs(roaT[2][0]);
t = fabs(aT[1]*roaT[0][2] - aT[0]*roaT[1][2]);
if (t > ra + rb)
return kOutside;
else if (ra < t + rb)
return kPartial;
// No separating axis - b is inside a
return kInside;
}
//______________________________________________________________________________
void TGLBoundingBox::Draw() const
{
// Draw the bounding box out using current GL color
glBegin(GL_LINE_LOOP);
glVertex3dv(fVertex[0].CArr());
glVertex3dv(fVertex[1].CArr());
glVertex3dv(fVertex[2].CArr());
glVertex3dv(fVertex[3].CArr());
glVertex3dv(fVertex[7].CArr());
glVertex3dv(fVertex[6].CArr());
glVertex3dv(fVertex[5].CArr());
glVertex3dv(fVertex[4].CArr());
glEnd();
glBegin(GL_LINES);
glVertex3dv(fVertex[1].CArr());
glVertex3dv(fVertex[5].CArr());
glVertex3dv(fVertex[2].CArr());
glVertex3dv(fVertex[6].CArr());
glVertex3dv(fVertex[0].CArr());
glVertex3dv(fVertex[3].CArr());
glVertex3dv(fVertex[4].CArr());
glVertex3dv(fVertex[7].CArr());
glEnd();
}
//______________________________________________________________________________
Double_t TGLBoundingBox::Min(UInt_t index) const
{
// Find minimum vertex value for axis of index X(0), Y(1), Z(2)
Double_t min = fVertex[0][index];
for (UInt_t v = 1; v < 8; v++) {
if (fVertex[v][index] < min) {
min = fVertex[v][index];
}
}
return min;
}
//______________________________________________________________________________
Double_t TGLBoundingBox::Max(UInt_t index) const
{
// Find maximum vertex value for axis of index X(0), Y(1), Z(2)
Double_t max = fVertex[0][index];
for (UInt_t v = 1; v < 8; v++) {
if (fVertex[v][index] > max) {
max = fVertex[v][index];
}
}
return max;
}
//______________________________________________________________________________
void TGLBoundingBox::Dump() const
{
// Output to std::cout the vertexes, center and volume of box
for (UInt_t i = 0; i<8; i++) {
std::cout << "[" << i << "] (" << fVertex[i].X() << "," << fVertex[i].Y() << "," << fVertex[i].Z() << ")" << std::endl;
}
std::cout << "Center ";
Center().Dump();
std::cout << " Volume " << Volume() << std::endl;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.