// @(#)root/minuit:$Name: $:$Id: TFitter.cxx,v 1.32 2005/09/04 10:27:14 brun Exp $
// Author: Rene Brun 31/08/99
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#include "TMinuit.h"
#include "TFitter.h"
#include "TH1.h"
#include "TF1.h"
#include "TF2.h"
#include "TGraph.h"
#include "TGraph2D.h"
#include "TMultiGraph.h"
extern void H1FitChisquare(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
extern void H1FitLikelihood(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
extern void GraphFitChisquare(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
extern void Graph2DFitChisquare(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
extern void MultiGraphFitChisquare(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
ClassImp(TFitter)
//______________________________________________________________________________
TFitter::TFitter(Int_t maxpar)
{
//*-*-*-*-*-*-*-*-*-*-*default constructor*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ===================
fMinuit = new TMinuit(maxpar);
fNlog = 0;
fSumLog = 0;
fCovar = 0;
SetName("MinuitFitter");
}
//______________________________________________________________________________
TFitter::~TFitter()
{
//*-*-*-*-*-*-*-*-*-*-*default destructor*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-* ==================
if (fCovar) delete [] fCovar;
if (fSumLog) delete [] fSumLog;
}
//______________________________________________________________________________
Double_t TFitter::Chisquare(Int_t npar, Double_t *params) const
{
// return a chisquare equivalent
Double_t amin = 0;
H1FitChisquare(npar,params,amin,params,1);
return amin;
}
//______________________________________________________________________________
void TFitter::Clear(Option_t *)
{
// reset the fitter environment
if (fCovar) {delete [] fCovar; fCovar = 0;}
fMinuit->mncler();
//reset the internal Minuit random generator to its initial state
Double_t val = 3;
Int_t inseed = 12345;
fMinuit->mnrn15(val,inseed);
}
//______________________________________________________________________________
Int_t TFitter::ExecuteCommand(const char *command, Double_t *args, Int_t nargs)
{
// Execute a fitter command;
// command : command string
// args : list of nargs command arguments
if (fCovar) {delete [] fCovar; fCovar = 0;}
Int_t ierr = 0;
fMinuit->mnexcm(command,args,nargs,ierr);
return ierr;
}
//______________________________________________________________________________
void TFitter::FixParameter(Int_t ipar)
{
// Fix parameter ipar.
if (fCovar) {delete [] fCovar; fCovar = 0;}
fMinuit->FixParameter(ipar);
}
//______________________________________________________________________________
Double_t *TFitter::GetCovarianceMatrix() const
{
// return a pointer to the covariance matrix
if (fCovar) return fCovar;
Int_t npars = fMinuit->GetNumPars();
((TFitter*)this)->fCovar = new Double_t[npars*npars];
fMinuit->mnemat(fCovar,npars);
return fCovar;
}
//______________________________________________________________________________
Double_t TFitter::GetCovarianceMatrixElement(Int_t i, Int_t j) const
{
// return element i,j from the covariance matrix
GetCovarianceMatrix();
Int_t npars = fMinuit->GetNumPars();
if (i < 0 || i >= npars || j < 0 || j >= npars) {
Error("GetCovarianceMatrixElement","Illegal arguments i=%d, j=%d",i,j);
return 0;
}
return fCovar[j+npars*i];
}
//______________________________________________________________________________
Int_t TFitter::GetErrors(Int_t ipar,Double_t &eplus, Double_t &eminus, Double_t &eparab, Double_t &globcc) const
{
// return current errors for a parameter
// ipar : parameter number
// eplus : upper error
// eminus : lower error
// eparab : parabolic error
// globcc : global correlation coefficient
Int_t ierr = 0;
fMinuit->mnerrs(ipar, eplus,eminus,eparab,globcc);
return ierr;
}
//______________________________________________________________________________
Int_t TFitter::GetNumberTotalParameters() const
{
// return the total number of parameters (free + fixed)
return fMinuit->fNpar + fMinuit->fNpfix;
}
//______________________________________________________________________________
Int_t TFitter::GetNumberFreeParameters() const
{
// return the number of free parameters
return fMinuit->fNpar;
}
//______________________________________________________________________________
Double_t TFitter::GetParError(Int_t ipar) const
{
// return error of parameter ipar
Int_t ierr = 0;
TString pname;
Double_t value,verr,vlow,vhigh;
fMinuit->mnpout(ipar, pname,value,verr,vlow,vhigh,ierr);
return verr;
}
//______________________________________________________________________________
Double_t TFitter::GetParameter(Int_t ipar) const
{
// return current value of parameter ipar
Int_t ierr = 0;
TString pname;
Double_t value,verr,vlow,vhigh;
fMinuit->mnpout(ipar, pname,value,verr,vlow,vhigh,ierr);
return value;
}
//______________________________________________________________________________
Int_t TFitter::GetParameter(Int_t ipar, char *parname,Double_t &value,Double_t &verr,Double_t &vlow, Double_t &vhigh) const
{
// return current values for a parameter
// ipar : parameter number
// parname : parameter name
// value : initial parameter value
// verr : initial error for this parameter
// vlow : lower value for the parameter
// vhigh : upper value for the parameter
// WARNING! parname must be suitably dimensionned in the calling function.
Int_t ierr = 0;
TString pname;
fMinuit->mnpout(ipar, pname,value,verr,vlow,vhigh,ierr);
strcpy(parname,pname.Data());
return ierr;
}
//______________________________________________________________________________
Int_t TFitter::GetStats(Double_t &amin, Double_t &edm, Double_t &errdef, Int_t &nvpar, Int_t &nparx) const
{
// return global fit parameters
// amin : chisquare
// edm : estimated distance to minimum
// errdef
// nvpar : number of variable parameters
// nparx : total number of parameters
Int_t ierr = 0;
fMinuit->mnstat(amin,edm,errdef,nvpar,nparx,ierr);
return ierr;
}
//______________________________________________________________________________
Double_t TFitter::GetSumLog(Int_t n)
{
// return Sum(log(i) i=0,n
// used by log likelihood fits
if (n < 0) return 0;
if (n > fNlog) {
if (fSumLog) delete [] fSumLog;
fNlog = 2*n+1000;
fSumLog = new Double_t[fNlog+1];
Double_t fobs = 0;
for (Int_t j=0;j<=fNlog;j++) {
if (j > 1) fobs += TMath::Log(j);
fSumLog[j] = fobs;
}
}
if (fSumLog) return fSumLog[n];
return 0;
}
//______________________________________________________________________________
Bool_t TFitter::IsFixed(Int_t ipar) const
{
//return kTRUE if parameter ipar is fixed, kFALSE othersise)
for (Int_t i=0;i<fMinuit->fNpfix;i++) {
if (fMinuit->fNexofi[i] == ipar) return kTRUE;
}
return kFALSE;
}
//______________________________________________________________________________
void TFitter::PrintResults(Int_t level, Double_t amin) const
{
// Print fit results
fMinuit->mnprin(level,amin);
}
//______________________________________________________________________________
void TFitter::ReleaseParameter(Int_t ipar)
{
// Release parameter ipar.
if (fCovar) {delete [] fCovar; fCovar = 0;}
fMinuit->Release(ipar);
}
//______________________________________________________________________________
void TFitter::SetFCN(void *fcn)
{
// Specify the address of the fitting algorithm (from the interpreter)
if (fCovar) {delete [] fCovar; fCovar = 0;}
TVirtualFitter::SetFCN(fcn);
fMinuit->SetFCN(fcn);
}
//______________________________________________________________________________
void TFitter::SetFCN(void (*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t))
{
// Specify the address of the fitting algorithm
if (fCovar) {delete [] fCovar; fCovar = 0;}
TVirtualFitter::SetFCN(fcn);
fMinuit->SetFCN(fcn);
}
//______________________________________________________________________________
void TFitter::SetFitMethod(const char *name)
{
// ret fit method (chisquare or loglikelihood)
if (fCovar) {delete [] fCovar; fCovar = 0;}
if (!strcmp(name,"H1FitChisquare")) SetFCN(H1FitChisquare);
if (!strcmp(name,"H1FitLikelihood")) SetFCN(H1FitLikelihood);
if (!strcmp(name,"GraphFitChisquare")) SetFCN(GraphFitChisquare);
if (!strcmp(name,"Graph2DFitChisquare")) SetFCN(Graph2DFitChisquare);
if (!strcmp(name, "MultiGraphFitChisquare")) SetFCN(MultiGraphFitChisquare);
}
//______________________________________________________________________________
Int_t TFitter::SetParameter(Int_t ipar,const char *parname,Double_t value,Double_t verr,Double_t vlow, Double_t vhigh)
{
// set initial values for a parameter
// ipar : parameter number
// parname : parameter name
// value : initial parameter value
// verr : initial error for this parameter
// vlow : lower value for the parameter
// vhigh : upper value for the parameter
if (fCovar) {delete [] fCovar; fCovar = 0;}
Int_t ierr = 0;
fMinuit->mnparm(ipar,parname,value,verr,vlow,vhigh,ierr);
return ierr;
}
//______________________________________________________________________________
void H1FitChisquare(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
{
// Minimization function for H1s using a Chisquare method
// ======================================================
Double_t cu,eu,fu,fsum;
Double_t dersum[100], grad[100];
Double_t x[3];
Int_t bin,binx,biny,binz,k;
Axis_t binxlow, binxup, binxsize;
Axis_t binylow, binyup, binysize;
Axis_t binzlow, binzup, binzsize;
Int_t npfits = 0;
TVirtualFitter *hFitter = TVirtualFitter::GetFitter();
TH1 *hfit = (TH1*)hFitter->GetObjectFit();
TF1 *f1 = (TF1*)hFitter->GetUserFunc();
Foption_t fitOption = hFitter->GetFitOption();
f1->InitArgs(x,u);
npar = f1->GetNpar();
if (flag == 2) for (k=0;k<npar;k++) dersum[k] = gin[k] = 0;
f = 0;
Int_t hxfirst = hFitter->GetXfirst();
Int_t hxlast = hFitter->GetXlast();
Int_t hyfirst = hFitter->GetYfirst();
Int_t hylast = hFitter->GetYlast();
Int_t hzfirst = hFitter->GetZfirst();
Int_t hzlast = hFitter->GetZlast();
TAxis *xaxis = hfit->GetXaxis();
TAxis *yaxis = hfit->GetYaxis();
TAxis *zaxis = hfit->GetZaxis();
for (binz=hzfirst;binz<=hzlast;binz++) {
x[2] = zaxis->GetBinCenter(binz);
binzlow = zaxis->GetBinLowEdge(binz);
binzsize = zaxis->GetBinWidth(binz);
binzup = binzlow + binzsize;
for (biny=hyfirst;biny<=hylast;biny++) {
x[1] = yaxis->GetBinCenter(biny);
binylow = yaxis->GetBinLowEdge(biny);
binysize = yaxis->GetBinWidth(biny);
binyup = binylow + binysize;
for (binx=hxfirst;binx<=hxlast;binx++) {
x[0] = xaxis->GetBinCenter(binx);
if (!f1->IsInside(x)) continue;
bin = hfit->GetBin(binx,biny,binz);
cu = hfit->GetBinContent(bin);
TF1::RejectPoint(kFALSE);
if (fitOption.Integral) {
binxlow = xaxis->GetBinLowEdge(binx);
binxsize = xaxis->GetBinWidth(binx);
binxup = binxlow + binxsize;
if (hfit->GetDimension() < 2) {
fu = f1->Integral(binxlow,binxup,u)/binxsize;
} else if (hfit->GetDimension() < 3) {
f1->SetParameters(u);
fu = f1->Integral(binxlow,binxup,binylow,binyup)/(binxsize*binysize);
} else {
f1->SetParameters(u);
fu = f1->Integral(binxlow,binxup,binylow,binyup,binzlow,binzup)/(binxsize*binysize*binzsize);
}
} else {
fu = f1->EvalPar(x,u);
}
if (TF1::RejectedPoint()) continue;
if (fitOption.W1) {
eu = 1;
} else {
eu = hfit->GetBinError(bin);
if (eu <= 0) continue;
}
if (flag == 2) {
for (k=0;k<npar;k++) dersum[k] += 1; //should be the derivative
}
npfits++;
if (flag == 2) {
for (k=0;k<npar;k++) grad[k] += dersum[k]*(fu-cu)/eu; dersum[k] = 0;
}
fsum = (cu-fu)/eu;
f += fsum*fsum;
}
}
}
f1->SetNumberFitPoints(npfits);
}
//______________________________________________________________________________
void H1FitLikelihood(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
{
// -*-*-*-*Minimization function for H1s using a Likelihood method*-*-*-*-*-*
// =======================================================
// Basically, it forms the likelihood by determining the Poisson
// probability that given a number of entries in a particular bin,
// the fit would predict it's value. This is then done for each bin,
// and the sum of the logs is taken as the likelihood.
Double_t cu,fu,fobs,fsub;
Double_t dersum[100];
Double_t x[3];
Int_t bin,binx,biny,binz,k,icu;
Axis_t binlow, binup, binsize;
Int_t npfits = 0;
TVirtualFitter *hFitter = TVirtualFitter::GetFitter();
TH1 *hfit = (TH1*)hFitter->GetObjectFit();
TF1 *f1 = (TF1*)hFitter->GetUserFunc();
Foption_t fitOption = hFitter->GetFitOption();
f1->InitArgs(x,u);
npar = f1->GetNpar();
if (flag == 2) for (k=0;k<npar;k++) dersum[k] = gin[k] = 0;
f = 0;
Int_t hxfirst = hFitter->GetXfirst();
Int_t hxlast = hFitter->GetXlast();
Int_t hyfirst = hFitter->GetYfirst();
Int_t hylast = hFitter->GetYlast();
Int_t hzfirst = hFitter->GetZfirst();
Int_t hzlast = hFitter->GetZlast();
TAxis *xaxis = hfit->GetXaxis();
TAxis *yaxis = hfit->GetYaxis();
TAxis *zaxis = hfit->GetZaxis();
for (binz=hzfirst;binz<=hzlast;binz++) {
x[2] = zaxis->GetBinCenter(binz);
for (biny=hyfirst;biny<=hylast;biny++) {
x[1] = yaxis->GetBinCenter(biny);
for (binx=hxfirst;binx<=hxlast;binx++) {
x[0] = xaxis->GetBinCenter(binx);
if (!f1->IsInside(x)) continue;
TF1::RejectPoint(kFALSE);
bin = hfit->GetBin(binx,biny,binz);
cu = hfit->GetBinContent(bin);
if (fitOption.Integral) {
binlow = xaxis->GetBinLowEdge(binx);
binsize = xaxis->GetBinWidth(binx);
binup = binlow + binsize;
fu = f1->Integral(binlow,binup,u)/binsize;
} else {
fu = f1->EvalPar(x,u);
}
if (TF1::RejectedPoint()) continue;
npfits++;
if (flag == 2) {
for (k=0;k<npar;k++) {
dersum[k] += 1; //should be the derivative
//grad[k] += dersum[k]*(fu-cu)/eu; dersum[k] = 0;
}
}
if (fu < 1.e-9) fu = 1.e-9;
if (fitOption.Like == 1) {
icu = Int_t(cu);
fsub = -fu +icu*TMath::Log(fu);
fobs = hFitter->GetSumLog(icu);
} else {
fsub = -fu +cu*TMath::Log(fu);
fobs = TMath::LnGamma(cu+1);
}
fsub -= fobs;
f -= fsub;
}
}
}
f *= 2;
f1->SetNumberFitPoints(npfits);
}
//______________________________________________________________________________
void GraphFitChisquare(Int_t &npar, Double_t * /*gin*/, Double_t &f,
Double_t *u, Int_t /*flag*/)
{
//*-*-*-*-*-*Minimization function for Graphs using a Chisquare method*-*-*-*-*
//*-* =========================================================
//
// In case of a TGraphErrors object, ex, the error along x, is projected
// along the y-direction by calculating the function at the points x-exlow and
// x+exhigh.
//
// The chisquare is computed as the sum of the quantity below at each point:
//
// (y - f(x))**2
// -----------------------------------
// ey**2 + ((f(x+exhigh) - f(x-exlow))/2)**2
//
// where x and y are the point coordinates.
//
// In case the function lies below (above) the data point, ey is ey_low (ey_high).
//
// thanks to Andy Haas (haas@yahoo.com) for adding the case with TGraphasymmerrors
// University of Washington
// February 3, 2004
//
// NOTE:
// 1) By using the "effective variance" method a simple linear regression
// becomes suddenly a non-linear case , which takes several iterations
// instead of 0 as in the linear case .
//
// 2) The effective variance technique assumes that there is no correlation
// between the x and y coordinate .
//
// The book by Sigmund Brandt (Data Analysis) contains an interesting
// section how to solve the problem when correclations do exist .
Double_t cu,eu,exh,exl,ey,eux,fu,fsum;
Double_t x[1];
//Double_t xm,xp;
Int_t bin, npfits=0;
TVirtualFitter *grFitter = TVirtualFitter::GetFitter();
TGraph *gr = (TGraph*)grFitter->GetObjectFit();
TF1 *f1 = (TF1*)grFitter->GetUserFunc();
Foption_t fitOption = grFitter->GetFitOption();
Int_t n = gr->GetN();
Double_t *gx = gr->GetX();
Double_t *gy = gr->GetY();
//Double_t fxmin = f1->GetXmin();
//Double_t fxmax = f1->GetXmax();
npar = f1->GetNpar();
f = 0;
for (bin=0;bin<n;bin++) {
f1->InitArgs(x,u); //must be inside the loop because of TF1::Derivative calling InitArgs
x[0] = gx[bin];
if (!f1->IsInside(x)) continue;
cu = gy[bin];
TF1::RejectPoint(kFALSE);
fu = f1->EvalPar(x,u);
if (TF1::RejectedPoint()) continue;
fsum = (cu-fu);
npfits++;
if (fitOption.W1) {
f += fsum*fsum;
continue;
}
exh = gr->GetErrorXhigh(bin);
exl = gr->GetErrorXlow(bin);
ey = gr->GetErrorY(bin);
if (exl < 0) exl = 0;
if (exh < 0) exh = 0;
if (ey < 0) ey = 0;
if (exh > 0 && exl > 0) {
//Without the "variance method", we had the 6 next lines instead
// of the line above.
//xm = x[0] - exl; if (xm < fxmin) xm = fxmin;
//xp = x[0] + exh; if (xp > fxmax) xp = fxmax;
//Double_t fm,fp;
//x[0] = xm; fm = f1->EvalPar(x,u);
//x[0] = xp; fp = f1->EvalPar(x,u);
//eux = 0.5*(fp-fm);
//"Effective Variance" method introduced by Anna Kreshuk
// in version 4.00/08.
eux = 0.5*(exl + exh)*f1->Derivative(x[0], u);
} else
eux = 0.;
eu = ey*ey+eux*eux;
if (eu <= 0) eu = 1;
f += fsum*fsum/eu;
}
f1->SetNumberFitPoints(npfits);
//
}
//______________________________________________________________________________
void Graph2DFitChisquare(Int_t &npar, Double_t * /*gin*/, Double_t &f,
Double_t *u, Int_t /*flag*/)
{
//*-*-*-*-*Minimization function for 2D Graphs using a Chisquare method*-*-*-*-*
//*-* ============================================================
Double_t cu,eu,ex,ey,ez,eux,euy,fu,fsum,fm,fp;
Double_t x[2];
Double_t xm,xp,ym,yp;
Int_t bin, npfits=0;
TVirtualFitter *grFitter = TVirtualFitter::GetFitter();
TGraph2D *gr = (TGraph2D*)grFitter->GetObjectFit();
TF2 *f2 = (TF2*)grFitter->GetUserFunc();
Foption_t fitOption = grFitter->GetFitOption();
Int_t n = gr->GetN();
Double_t *gx = gr->GetX();
Double_t *gy = gr->GetY();
Double_t *gz = gr->GetZ();
Double_t fxmin = f2->GetXmin();
Double_t fxmax = f2->GetXmax();
Double_t fymin = f2->GetYmin();
Double_t fymax = f2->GetYmax();
npar = f2->GetNpar();
f = 0;
for (bin=0;bin<n;bin++) {
f2->InitArgs(x,u);
x[0] = gx[bin];
x[1] = gy[bin];
if (!f2->IsInside(x)) continue;
cu = gz[bin];
TF2::RejectPoint(kFALSE);
fu = f2->EvalPar(x,u);
if (TF2::RejectedPoint()) continue;
fsum = (cu-fu);
npfits++;
if (fitOption.W1) {
f += fsum*fsum;
continue;
}
ex = gr->GetErrorX(bin);
ey = gr->GetErrorY(bin);
ez = gr->GetErrorZ(bin);
if (ex < 0) ex = 0;
if (ey < 0) ey = 0;
if (ez < 0) ez = 0;
eux = euy = 0;
if (ex > 0) {
xm = x[0] - ex; if (xm < fxmin) xm = fxmin;
xp = x[0] + ex; if (xp > fxmax) xp = fxmax;
x[0] = xm; fm = f2->EvalPar(x,u);
x[0] = xp; fp = f2->EvalPar(x,u);
eux = fp-fm;
}
if (ey > 0) {
x[0] = gx[bin];
ym = x[1] - ey; if (ym < fymin) ym = fxmin;
yp = x[1] + ey; if (yp > fymax) yp = fymax;
x[1] = ym; fm = f2->EvalPar(x,u);
x[1] = yp; fp = f2->EvalPar(x,u);
euy = fp-fm;
}
eu = ez*ez+eux*eux+euy*euy;
if (eu <= 0) eu = 1;
f += fsum*fsum/eu;
}
f2->SetNumberFitPoints(npfits);
}
//______________________________________________________________________________
void MultiGraphFitChisquare(Int_t &npar, Double_t * /*gin*/, Double_t &f,
Double_t *u, Int_t /*flag*/)
{
Double_t cu,eu,exh,exl,ey,eux,fu,fsum;
Double_t x[1];
//Double_t xm,xp;
Int_t bin, npfits=0;
TVirtualFitter *grFitter = TVirtualFitter::GetFitter();
TMultiGraph *mg = (TMultiGraph*)grFitter->GetObjectFit();
TF1 *f1 = (TF1*)grFitter->GetUserFunc();
Foption_t fitOption = grFitter->GetFitOption();
TGraph *gr;
TIter next(mg->GetListOfGraphs());
Int_t n;
Double_t *gx;
Double_t *gy;
//Double_t fxmin = f1->GetXmin();
//Double_t fxmax = f1->GetXmax();
npar = f1->GetNpar();
f = 0;
while ((gr = (TGraph*) next())) {
n = gr->GetN();
gx = gr->GetX();
gy = gr->GetY();
for (bin=0;bin<n;bin++) {
f1->InitArgs(x,u); //must be inside the loop because of TF1::Derivative calling InitArgs
x[0] = gx[bin];
if (!f1->IsInside(x)) continue;
cu = gy[bin];
TF1::RejectPoint(kFALSE);
fu = f1->EvalPar(x,u);
if (TF1::RejectedPoint()) continue;
fsum = (cu-fu);
npfits++;
if (fitOption.W1) {
f += fsum*fsum;
continue;
}
exh = gr->GetErrorXhigh(bin);
exl = gr->GetErrorXlow(bin);
ey = gr->GetErrorY(bin);
if (exl < 0) exl = 0;
if (exh < 0) exh = 0;
if (ey < 0) ey = 0;
if (exh > 0 && exl > 0) {
//Without the "variance method", we had the 6 next lines instead
// of the line above.
//xm = x[0] - exl; if (xm < fxmin) xm = fxmin;
//xp = x[0] + exh; if (xp > fxmax) xp = fxmax;
//Double_t fm,fp;
//x[0] = xm; fm = f1->EvalPar(x,u);
//x[0] = xp; fp = f1->EvalPar(x,u);
//eux = 0.5*(fp-fm);
//"Effective Variance" method introduced by Anna Kreshuk
// in version 4.00/08.
eux = 0.5*(exl + exh)*f1->Derivative(x[0], u);
} else
eux = 0.;
eu = ey*ey+eux*eux;
if (eu <= 0) eu = 1;
f += fsum*fsum/eu;
}
}
f1->SetNumberFitPoints(npfits);
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.