/*****************************************************************************
* Project: RooFit *
* Package: RooFitCore *
* File: $Id: RooMCIntegrator.cc,v 1.22 2005/06/20 15:44:54 wverkerke Exp $
* Authors: *
* WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
* DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
* *
* Copyright (c) 2000-2005, Regents of the University of California *
* and Stanford University. All rights reserved. *
* *
* Redistribution and use in source and binary forms, *
* with or without modification, are permitted according to the terms *
* listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
*****************************************************************************/
// -- CLASS DESCRIPTION [AUX] --
// RooMCIntegrator implements an adaptive multi-dimensional Monte Carlo
// numerical integration, following the VEGAS algorithm originally described
// in G. P. Lepage, J. Comp. Phys. 27, 192(1978). This implementation is
// based on a C version from the 0.9 beta release of the GNU scientific library.
#include "RooFit.h"
#include "RooMCIntegrator.h"
#include "RooMCIntegrator.h"
#include "RooArgSet.h"
#include "RooNumber.h"
#include "RooAbsArg.h"
#include "RooNumIntFactory.h"
#include "RooRealVar.h"
#include "RooCategory.h"
#include <math.h>
#include <assert.h>
ClassImp(RooMCIntegrator)
;
// Register this class with RooNumIntFactory
static void registerMCIntegrator(RooNumIntFactory& fact)
{
// Construct default configuration
RooCategory samplingMode("samplingMode","Sampling Mode") ;
samplingMode.defineType("Importance",RooMCIntegrator::Importance) ;
samplingMode.defineType("ImportanceOnly",RooMCIntegrator::ImportanceOnly) ;
samplingMode.defineType("Stratified",RooMCIntegrator::Stratified) ;
samplingMode.setIndex(RooMCIntegrator::Importance) ;
RooCategory genType("genType","Generator Type") ;
genType.defineType("QuasiRandom",RooMCIntegrator::QuasiRandom) ;
genType.defineType("PseudoRandom",RooMCIntegrator::PseudoRandom) ;
genType.setIndex(RooMCIntegrator::QuasiRandom) ;
RooCategory verbose("verbose","Verbose flag") ;
verbose.defineType("true",1) ;
verbose.defineType("false",0) ;
verbose.setIndex(0) ;
RooRealVar alpha("alpha","Grid structure constant",1.5) ;
RooRealVar nRefineIter("nRefineIter","Number of refining iterations",5) ;
RooRealVar nRefinePerDim("nRefinePerDim","Number of refining samples (per dimension)",1000) ;
RooRealVar nIntPerDim("nIntPerDim","Number of integration samples (per dimension)",5000) ;
// Create prototype integrator
RooMCIntegrator* proto = new RooMCIntegrator() ;
// Register prototype and default config with factory
fact.storeProtoIntegrator(proto,RooArgSet(samplingMode,genType,verbose,alpha,nRefineIter,nRefinePerDim,nIntPerDim)) ;
// Make this method the default for all N>2-dim integrals
RooNumIntConfig::defaultConfig().methodND().setLabel(proto->IsA()->GetName()) ;
}
static Bool_t dummy = RooNumIntFactory::instance().registerInitializer(®isterMCIntegrator) ;
RooMCIntegrator::RooMCIntegrator()
{
// Dummy default ctor
}
RooMCIntegrator::RooMCIntegrator(const RooAbsFunc& function, SamplingMode mode,
GeneratorType genType, Bool_t verbose) :
RooAbsIntegrator(function), _grid(function), _verbose(verbose),
_alpha(1.5), _mode(mode), _genType(genType),
_nRefineIter(5),_nRefinePerDim(1000),_nIntegratePerDim(5000)
{
// check that our grid initialized without errors
if(!(_valid= _grid.isValid())) return;
if(_verbose) _grid.Print();
}
RooMCIntegrator::RooMCIntegrator(const RooAbsFunc& function, const RooNumIntConfig& config) :
RooAbsIntegrator(function), _grid(function)
{
const RooArgSet& configSet = config.getConfigSection(IsA()->GetName()) ;
_verbose = (Bool_t) configSet.getCatIndex("verbose",0) ;
_alpha = configSet.getRealValue("alpha",1.5) ;
_mode = (SamplingMode) configSet.getCatIndex("samplingMode",Importance) ;
_genType = (GeneratorType) configSet.getCatIndex("genType",QuasiRandom) ;
_nRefineIter = (Int_t) configSet.getRealValue("nRefineIter",5) ;
_nRefinePerDim = (Int_t) configSet.getRealValue("nRefinePerDim",1000) ;
_nIntegratePerDim = (Int_t) configSet.getRealValue("nIntPerDim",5000) ;
// check that our grid initialized without errors
if(!(_valid= _grid.isValid())) return;
if(_verbose) _grid.Print();
}
RooAbsIntegrator* RooMCIntegrator::clone(const RooAbsFunc& function, const RooNumIntConfig& config) const
{
return new RooMCIntegrator(function,config) ;
}
RooMCIntegrator::~RooMCIntegrator() {
}
Bool_t RooMCIntegrator::checkLimits() const {
// Check if we can integrate over the current domain.
return _grid.initialize(*integrand());
}
Double_t RooMCIntegrator::integral(const Double_t* /*yvec*/) {
// Evaluate the integral using a fixed number of calls to evaluate the integrand
// equal to about 10k per dimension. Use the first 5k calls to refine the grid
// over 5 iterations of 1k calls each, and the remaining 5k calls for a single
// high statistics integration.
_timer.Start(kTRUE);
vegas(AllStages,_nRefinePerDim*_grid.getDimension(),_nRefineIter);
Double_t ret = vegas(ReuseGrid,_nIntegratePerDim*_grid.getDimension(),1);
return ret ;
}
Double_t RooMCIntegrator::vegas(Stage stage, UInt_t calls, UInt_t iterations, Double_t *absError) {
// Perform one step of Monte Carlo integration using the specified number of iterations
// with (approximately) the specified number of integrand evaluation calls per iteration.
// Use the VEGAS algorithm, starting from the specified stage. Returns the best estimate
// of the integral. Also sets *absError to the estimated absolute error of the integral
// estimate if absError is non-zero.
//cout << "VEGAS stage = " << stage << " calls = " << calls << " iterations = " << iterations << endl ;
// reset the grid to its initial state if we are starting from scratch
if(stage == AllStages) _grid.initialize(*_function);
// reset the results of previous calculations on this grid, but reuse the grid itself.
if(stage <= ReuseGrid) {
_wtd_int_sum = 0;
_sum_wgts = 0;
_chi_sum = 0;
_it_num = 1;
_samples = 0;
}
// refine the results of previous calculations on the current grid.
if(stage <= RefineGrid) {
UInt_t bins = RooGrid::maxBins;
UInt_t boxes = 1;
UInt_t dim(_grid.getDimension());
// select the sampling mode for the next step
if(_mode != ImportanceOnly) {
// calculate the largest number of equal subdivisions ("boxes") along each
// axis that results in an average of no more than 2 integrand calls per cell
boxes = (UInt_t)floor(TMath::Power(calls/2.0,1.0/dim));
// use stratified sampling if we are allowed enough calls (or equivalently,
// if the dimension is low enough)
_mode = Importance;
if (2*boxes >= RooGrid::maxBins) {
_mode = Stratified;
// adjust the number of bins and boxes to give an integral number >= 1 of boxes per bin
Int_t box_per_bin= (boxes > RooGrid::maxBins) ? boxes/RooGrid::maxBins : 1;
bins= boxes/box_per_bin;
if(bins > RooGrid::maxBins) bins= RooGrid::maxBins;
boxes = box_per_bin * bins;
if(_verbose) cout << "RooMCIntegrator: using stratified sampling with " << bins << " bins and "
<< box_per_bin << " boxes/bin" << endl;
}
else {
if(_verbose) cout << "RooMCIntegrator: using importance sampling with " << bins << " bins and "
<< boxes << " boxes" << endl;
}
}
// calculate the total number of n-dim boxes for this step
Double_t tot_boxes = TMath::Power((Double_t)boxes,(Double_t)dim);
// increase the total number of calls to get at least 2 calls per box, if necessary
_calls_per_box = (UInt_t)(calls/tot_boxes);
if(_calls_per_box < 2) _calls_per_box= 2;
calls= (UInt_t)(_calls_per_box*tot_boxes);
// calculate the Jacobean factor: volume/(avg # of calls/bin)
_jac = _grid.getVolume()*TMath::Power((Double_t)bins,(Double_t)dim)/calls;
// setup our grid to use the calculated number of boxes and bins
_grid.setNBoxes(boxes);
if(bins != _grid.getNBins()) _grid.resize(bins);
}
// allocate memory for some book-keeping arrays
UInt_t *box= _grid.createIndexVector();
UInt_t *bin= _grid.createIndexVector();
Double_t *x= _grid.createPoint();
// loop over iterations for this step
Double_t cum_int(0),cum_sig(0);
_it_start = _it_num;
_chisq = 0.0;
for (UInt_t it = 0; it < iterations; it++) {
Double_t intgrl(0),intgrl_sq(0),sig(0),jacbin(_jac);
_it_num = _it_start + it;
// reset the values associated with each grid cell
_grid.resetValues();
// loop over grid boxes
_grid.firstBox(box);
do {
Double_t m(0),q(0);
// loop over integrand evaluations within this grid box
for(UInt_t k = 0; k < _calls_per_box; k++) {
// generate a random point in this box
Double_t bin_vol(0);
_grid.generatePoint(box, x, bin, bin_vol, _genType == QuasiRandom ? kTRUE : kFALSE);
// evaluate the integrand at the generated point
Double_t fval= jacbin*bin_vol*integrand(x);
// update mean and variance calculations
Double_t d = fval - m;
m+= d / (k + 1.0);
q+= d * d * (k / (k + 1.0));
// accumulate the results of this evaluation (importance sampling only)
if (_mode != Stratified) _grid.accumulate(bin, fval*fval);
}
intgrl += m * _calls_per_box;
Double_t f_sq_sum = q * _calls_per_box ;
sig += f_sq_sum ;
// accumulate the results for this grid box (stratified sampling only)
if (_mode == Stratified) _grid.accumulate(bin, f_sq_sum);
// print occasional progress messages
if(_timer.RealTime() > 1) { // wait at least 1 sec since the last message
cout << "RooMCIntegrator: still working..." << endl;
_timer.Start(kTRUE);
}
else {
_timer.Start(kFALSE);
}
} while(_grid.nextBox(box));
// compute final results for this iteration
Double_t wgt;
sig = sig / (_calls_per_box - 1.0) ;
if (sig > 0) {
wgt = 1.0 / sig;
}
else if (_sum_wgts > 0) {
wgt = _sum_wgts / _samples;
}
else {
wgt = 0.0;
}
intgrl_sq = intgrl * intgrl;
_result = intgrl;
_sigma = sqrt(sig);
if (wgt > 0.0) {
_samples++ ;
_sum_wgts += wgt;
_wtd_int_sum += intgrl * wgt;
_chi_sum += intgrl_sq * wgt;
cum_int = _wtd_int_sum / _sum_wgts;
cum_sig = sqrt (1 / _sum_wgts);
if (_samples > 1) {
_chisq = (_chi_sum - _wtd_int_sum * cum_int)/(_samples - 1.0);
}
}
else {
cum_int += (intgrl - cum_int) / (it + 1.0);
cum_sig = 0.0;
}
if (_verbose) {
cout << "=== Iteration " << _it_num << " : I = " << intgrl << " +/- " << sqrt(sig) << endl
<< " Cumulative : I = " << cum_int << " +/- " << cum_sig << "( chi2 = " << _chisq
<< ")" << endl;
// print the grid after the final iteration
if(it + 1 == iterations) _grid.Print("V");
}
_grid.refine(_alpha);
}
// cleanup
delete[] bin;
delete[] box;
delete[] x;
if(absError) *absError = cum_sig;
return cum_int;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.