/*****************************************************************************
* Project: RooFit *
* Package: RooFitCore *
* File: $Id: RooHist.cc,v 1.32 2005/06/20 15:44:53 wverkerke Exp $
* Authors: *
* WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
* DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
* *
* Copyright (c) 2000-2005, Regents of the University of California *
* and Stanford University. All rights reserved. *
* *
* Redistribution and use in source and binary forms, *
* with or without modification, are permitted according to the terms *
* listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
*****************************************************************************/
// -- CLASS DESCRIPTION [PLOT] --
// A RooHist is a graphical representation of binned data based on the
// TGraphAsymmErrors class. Error bars are calculated using either Poisson
// or Binomial statistics.
#include "RooFit.h"
#include "RooHist.h"
#include "RooHist.h"
#include "RooHistError.h"
#include "RooCurve.h"
#include "TH1.h"
#include "Riostream.h"
#include <iomanip>
#include <math.h>
ClassImp(RooHist)
RooHist::RooHist(Double_t nominalBinWidth, Double_t nSigma, Double_t /*xErrorFrac*/) :
TGraphAsymmErrors(), _nominalBinWidth(nominalBinWidth), _nSigma(nSigma), _rawEntries(-1)
{
// Create an empty histogram that can be filled with the addBin()
// and addAsymmetryBin() methods. Use the optional parameter to
// specify the confidence level in units of sigma to use for
// calculating error bars. The nominal bin width specifies the
// default used by addBin(), and is used to set the relative
// normalization of bins with different widths.
initialize();
}
RooHist::RooHist(const TH1 &data, Double_t nominalBinWidth, Double_t nSigma, RooAbsData::ErrorType etype, Double_t xErrorFrac) :
TGraphAsymmErrors(), _nominalBinWidth(nominalBinWidth), _nSigma(nSigma), _rawEntries(-1)
{
// Create a histogram from the contents of the specified TH1 object
// which may have fixed or variable bin widths. Error bars are
// calculated using Poisson statistics. Prints a warning and rounds
// any bins with non-integer contents. Use the optional parameter to
// specify the confidence level in units of sigma to use for
// calculating error bars. The nominal bin width specifies the
// default used by addBin(), and is used to set the relative
// normalization of bins with different widths. If not set, the
// nominal bin width is calculated as range/nbins.
initialize();
// copy the input histogram's name and title
SetName(data.GetName());
SetTitle(data.GetTitle());
// calculate our nominal bin width if necessary
if(_nominalBinWidth == 0) {
const TAxis *axis= ((TH1&)data).GetXaxis();
if(axis->GetNbins() > 0) _nominalBinWidth= (axis->GetXmax() - axis->GetXmin())/axis->GetNbins();
}
// TH1::GetYaxis() is not const (why!?)
setYAxisLabel(const_cast<TH1&>(data).GetYaxis()->GetTitle());
// initialize our contents from the input histogram's contents
Int_t nbin= data.GetNbinsX();
for(Int_t bin= 1; bin <= nbin; bin++) {
Axis_t x= data.GetBinCenter(bin);
Stat_t y= data.GetBinContent(bin);
Stat_t dy = data.GetBinError(bin) ;
if (etype==RooAbsData::Poisson) {
addBin(x,roundBin(y),data.GetBinWidth(bin),xErrorFrac);
} else {
addBinWithError(x,y,dy,dy,data.GetBinWidth(bin),xErrorFrac);
}
}
// add over/underflow bins to our event count
_entries+= data.GetBinContent(0) + data.GetBinContent(nbin+1);
}
RooHist::RooHist(const TH1 &data1, const TH1 &data2, Double_t nominalBinWidth, Double_t nSigma, Double_t xErrorFrac) :
TGraphAsymmErrors(), _nominalBinWidth(nominalBinWidth), _nSigma(nSigma), _rawEntries(-1)
{
// Create a histogram from the asymmetry between the specified TH1 objects
// which may have fixed or variable bin widths, but which must both have
// the same binning. The asymmetry is calculated as (1-2)/(1+2). Error bars are
// calculated using Binomial statistics. Prints a warning and rounds
// any bins with non-integer contents. Use the optional parameter to
// specify the confidence level in units of sigma to use for
// calculating error bars. The nominal bin width specifies the
// default used by addAsymmetryBin(), and is used to set the relative
// normalization of bins with different widths. If not set, the
// nominal bin width is calculated as range/nbins.
initialize();
// copy the first input histogram's name and title
SetName(data1.GetName());
SetTitle(data1.GetTitle());
// calculate our nominal bin width if necessary
if(_nominalBinWidth == 0) {
const TAxis *axis= ((TH1&)data1).GetXaxis();
if(axis->GetNbins() > 0) _nominalBinWidth= (axis->GetXmax() - axis->GetXmin())/axis->GetNbins();
}
setYAxisLabel(Form("Asymmetry (%s - %s)/(%s + %s)",
data1.GetName(),data2.GetName(),data1.GetName(),data2.GetName()));
// initialize our contents from the input histogram contents
Int_t nbin= data1.GetNbinsX();
if(data2.GetNbinsX() != nbin) {
cout << "RooHist::RooHist: histograms have different number of bins" << endl;
return;
}
for(Int_t bin= 1; bin <= nbin; bin++) {
Axis_t x= data1.GetBinCenter(bin);
if(fabs(data2.GetBinCenter(bin)-x)>1e-10) {
cout << "RooHist::RooHist: histograms have different centers for bin " << bin << endl;
}
Stat_t y1= data1.GetBinContent(bin);
Stat_t y2= data2.GetBinContent(bin);
addAsymmetryBin(x,roundBin(y1),roundBin(y2),data1.GetBinWidth(bin),xErrorFrac);
}
// we do not have a meaningful number of entries
_entries= -1;
}
RooHist::RooHist(const RooHist& hist1, const RooHist& hist2, Double_t wgt1, Double_t wgt2, RooAbsData::ErrorType etype, Double_t xErrorFrac) : _rawEntries(-1){
// Create histogram as sum of two existing histograms. If Poisson errors are selected the histograms are
// added and Poisson confidence intervals are calculated for the summed content. If wgt1 and wgt2 are not
// 1 in this mode, a warning message is printed. If SumW2 errors are selectd the histograms are added
// and the histograms errors are added in quadrature, taking the weights into account.
// Initialize the histogram
initialize() ;
// Copy all non-content properties from hist1
SetName(hist1.GetName()) ;
SetTitle(hist1.GetTitle()) ;
_nominalBinWidth=hist1._nominalBinWidth ;
_nSigma=hist1._nSigma ;
setYAxisLabel(hist1.getYAxisLabel()) ;
if (!hist1.hasIdenticalBinning(hist2)) {
cout << "RooHist::RooHist input histograms have incompatible binning, combined histogram will remain empty" << endl ;
return ;
}
if (etype==RooAbsData::Poisson) {
// Add histograms with Poisson errors
// Issue warning if weights are not 1
if (wgt1!=1.0 || wgt2 != 1.0) {
cout << "RooHist::RooHist: WARNING: Poisson errors of weighted sum of two histograms is not well defined! " << endl
<< " Summed histogram bins will rounded to nearest integer for Poisson confidence interval calculation" << endl ;
}
// Add histograms, calculate Poisson confidence interval on sum value
Int_t i,n=hist1.GetN() ;
for(i=0 ; i<n ; i++) {
Double_t x1,y1,x2,y2,dx1 ;
#if ROOT_VERSION_CODE >= ROOT_VERSION(4,0,1)
hist1.GetPoint(i,x1,y1) ;
#else
const_cast<RooHist&>(hist1).GetPoint(i,x1,y1) ;
#endif
dx1 = hist1.GetErrorX(i) ;
#if ROOT_VERSION_CODE >= ROOT_VERSION(4,0,1)
hist2.GetPoint(i,x2,y2) ;
#else
const_cast<RooHist&>(hist2).GetPoint(i,x2,y2) ;
#endif
addBin(x1,roundBin(wgt1*y1+wgt2*y2),2*dx1/xErrorFrac,xErrorFrac) ;
}
} else {
// Add histograms with SumW2 errors
// Add histograms, calculate combined sum-of-weights error
Int_t i,n=hist1.GetN() ;
for(i=0 ; i<n ; i++) {
Double_t x1,y1,x2,y2,dx1,dy1,dy2 ;
#if ROOT_VERSION_CODE >= ROOT_VERSION(4,0,1)
hist1.GetPoint(i,x1,y1) ;
#else
const_cast<RooHist&>(hist1).GetPoint(i,x1,y1) ;
#endif
dx1 = hist1.GetErrorX(i) ;
dy1 = hist1.GetErrorY(i) ;
dy2 = hist2.GetErrorY(i) ;
#if ROOT_VERSION_CODE >= ROOT_VERSION(4,0,1)
hist2.GetPoint(i,x2,y2) ;
#else
const_cast<RooHist&>(hist2).GetPoint(i,x2,y2) ;
#endif
Double_t dy = sqrt(wgt1*wgt1*dy1*dy1+wgt2*wgt2*dy2*dy2) ;
addBinWithError(x1,wgt1*y1+wgt2*y2,dy,dy,2*dx1/xErrorFrac,xErrorFrac) ;
}
}
}
void RooHist::initialize() {
// Perform common initialization for all constructors.
SetMarkerStyle(8);
_entries= 0;
}
Double_t RooHist::getFitRangeNEvt() const {
return (_rawEntries==-1 ? _entries : _rawEntries) ;
}
Double_t RooHist::getFitRangeNEvt(Double_t xlo, Double_t xhi) const
{
// Calculate integral of histogram in given range
Double_t sum(0) ;
for (int i=0 ; i<GetN() ; i++) {
Double_t x,y ;
GetPoint(i,x,y) ;
if (x>=xlo && x<=xhi) {
sum += y ;
}
}
if (_rawEntries!=-1) {
cout << "RooHist::getFitRangeNEvt() WARNING: Number of normalization events associated to histogram is not equal to number of events in histogram" << endl
<< " due cut made in RooAbsData::plotOn() call. Automatic normalization over sub-range of plot variable assumes" << endl
<< " that the effect of that cut is uniform across the plot, which may be an incorrect assumption. To be sure of" << endl
<< " correct normalization explicit pass normalization information to RooAbsPdf::plotOn() call using Normalization()" << endl ;
sum *= _rawEntries / _entries ;
}
return sum ;
}
Double_t RooHist::getFitRangeBinW() const {
return _nominalBinWidth ;
}
Int_t RooHist::roundBin(Double_t y) {
// Return the nearest positive integer to the input value
// and print a warning if an adjustment is required.
if(y < 0) {
cout << fName << "::roundBin: rounding negative bin contents to zero: " << y << endl;
return 0;
}
Int_t n= (Int_t)(y+0.5);
if(fabs(y-n)>1e-6) {
cout << fName << "::roundBin: rounding non-integer bin contents: " << y << endl;
}
return n;
}
void RooHist::addBin(Axis_t binCenter, Int_t n, Double_t binWidth, Double_t xErrorFrac) {
// Add a bin to this histogram with the specified integer bin contents
// and using an error bar calculated with Poisson statistics. The bin width
// is used to set the relative scale of bins with different widths.
Double_t scale= 1;
if(binWidth > 0) {
scale= _nominalBinWidth/binWidth;
}
_entries+= n;
Int_t index= GetN();
// calculate Poisson errors for this bin
Double_t ym,yp,dx(0.5*binWidth);
if(!RooHistError::instance().getPoissonInterval(n,ym,yp,_nSigma)) {
cout << "RooHist::addBin: unable to add bin with " << n << " events" << endl;
return;
}
SetPoint(index,binCenter,n*scale);
SetPointError(index,dx*xErrorFrac,dx*xErrorFrac,scale*(n-ym),scale*(yp-n));
updateYAxisLimits(scale*yp);
updateYAxisLimits(scale*ym);
}
void RooHist::addBinWithError(Axis_t binCenter, Double_t n, Double_t elow, Double_t ehigh, Double_t binWidth, Double_t xErrorFrac)
{
// Add a bin to this histogram with the specified bin contents
// and error. The bin width is used to set the relative scale of
// bins with different widths.
Double_t scale= 1;
if(binWidth > 0) {
scale= _nominalBinWidth/binWidth;
}
_entries+= n;
Int_t index= GetN();
Double_t dx(0.5*binWidth) ;
SetPoint(index,binCenter,n*scale);
SetPointError(index,dx*xErrorFrac,dx*xErrorFrac,elow*scale,ehigh*scale);
updateYAxisLimits(scale*(n-elow));
updateYAxisLimits(scale*(n+ehigh));
}
void RooHist::addAsymmetryBin(Axis_t binCenter, Int_t n1, Int_t n2, Double_t binWidth, Double_t xErrorFrac) {
// Add a bin to this histogram with the value (n1-n2)/(n1+n2)
// using an error bar calculated with Binomial statistics.
Double_t scale= 1;
if(binWidth > 0) scale= _nominalBinWidth/binWidth;
Int_t index= GetN();
// calculate Binomial errors for this bin
Double_t ym,yp,dx(0.5*binWidth);
if(!RooHistError::instance().getBinomialInterval(n1,n2,ym,yp,_nSigma)) {
cout << "RooHist::addAsymmetryBin: unable to calculate binomial error for bin with " << n1 << "," << n2 << " events" << endl;
return;
}
Double_t a= (Double_t)(n1-n2)/(n1+n2);
SetPoint(index,binCenter,a);
SetPointError(index,dx*xErrorFrac,dx*xErrorFrac,(a-ym),(yp-a));
updateYAxisLimits(scale*yp);
updateYAxisLimits(scale*ym);
}
RooHist::~RooHist() { }
Bool_t RooHist::hasIdenticalBinning(const RooHist& other) const
{
// First check if number of bins is the same
if (GetN() != other.GetN()) {
return kFALSE ;
}
// Next require that all bin centers are the same
Int_t i ;
for (i=0 ; i<GetN() ; i++) {
Double_t x1,x2,y1,y2 ;
#if ROOT_VERSION_CODE >= ROOT_VERSION(4,0,1)
GetPoint(i,x1,y1) ;
other.GetPoint(i,x2,y2) ;
#else
const_cast<RooHist&>(*this).GetPoint(i,x1,y1) ;
const_cast<RooHist&>(other).GetPoint(i,x2,y2) ;
#endif
if (fabs(x1-x2)>1e-10) {
return kFALSE ;
}
}
return kTRUE ;
}
void RooHist::printToStream(ostream& os, PrintOption opt, TString indent) const {
// Print info about this histogram to the specified output stream.
//
// Standard: number of entries
// Shape: error CL and maximum value
// Verbose: print our bin contents and errors
oneLinePrint(os,*this);
RooPlotable::printToStream(os,opt,indent);
if(opt >= Standard) {
os << indent << "--- RooHist ---" << endl;
Int_t n= GetN();
os << indent << " Contains " << n << " bins" << endl;
if(opt >= Shape) {
os << indent << " Errors calculated at" << _nSigma << "-sigma CL" << endl;
if(opt >= Verbose) {
os << indent << " Bin Contents:" << endl;
for(Int_t i= 0; i < n; i++) {
os << indent << setw(3) << i << ") x= " << fX[i];
if(fEXhigh[i] > 0 || fEXlow[i] > 0) {
os << " +" << fEXhigh[i] << " -" << fEXlow[i];
}
os << " , y = " << fY[i] << " +" << fEYhigh[i] << " -" << fEYlow[i] << endl;
}
}
}
}
}
RooHist* RooHist::makePullHist(const RooCurve& curve) const {
// Make histogram of pulls w.r.t to given curve
// Copy all non-content properties from hist1
RooHist* pullHist = new RooHist(_nominalBinWidth) ;
pullHist->SetName(Form("pull_%s_s",GetName(),curve.GetName())) ;
pullHist->SetTitle(Form("Pull of %s and %s",GetTitle(),curve.GetTitle())) ;
// Determine range of curve
Double_t xstart,xstop,y ;
#if ROOT_VERSION_CODE >= ROOT_VERSION(4,0,1)
curve.GetPoint(0,xstart,y) ;
curve.GetPoint(curve.GetN()-1,xstop,y) ;
#else
const_cast<RooCurve&>(curve).GetPoint(0,xstart,y) ;
const_cast<RooCurve&>(curve).GetPoint(curve.GetN()-1,xstop,y) ;
#endif
// Add histograms, calculate Poisson confidence interval on sum value
Int_t i,n=GetN() ;
for(i=0 ; i<n ; i++) {
Double_t x,dyl,dyh,y,cy ;
#if ROOT_VERSION_CODE >= ROOT_VERSION(4,0,1)
GetPoint(i,x,y) ;
#else
const_cast<RooHist&>(*this).GetPoint(i,x,y) ;
#endif
// Only calculate pull for bins inside curve range
if (x<xstart || x>xstop) continue ;
dyl = GetEYlow()[i] ;
dyh = GetEYhigh()[i] ;
cy = curve.interpolate(x) ;
Double_t pull = y-cy ;
if (pull>0) {
pull /= dyl ;
} else {
pull /= dyh ;
}
pullHist->addBinWithError(x,0,pull<0?-pull:0,pull>0?pull:0,0,0) ;
}
return pullHist ;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.