/*****************************************************************************
* Project: RooFit *
* Package: RooFitCore *
* File: $Id: RooGaussKronrodIntegrator1D.cc,v 1.6 2005/06/20 15:44:52 wverkerke Exp $
* Authors: *
* WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
* DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
* *
* Copyright (c) 2000-2005, Regents of the University of California *
* and Stanford University. All rights reserved. *
* *
* Redistribution and use in source and binary forms, *
* with or without modification, are permitted according to the terms *
* listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
*****************************************************************************/
// -- CLASS DESCRIPTION [AUX] --
// RooGaussKronrodIntegrator1D implements the Gauss-Kronrod integration algorithm.
//
// An Gaussian quadrature method for numerical integration in which
// error is estimation based on evaluation at special points known as
// "Kronrod points." By suitably picking these points, abscissas from
// previous iterations can be reused as part of the new set of points,
// whereas usual Gaussian quadrature would require recomputation of
// all abscissas at each iteration.
//
// This class automatically handles (-inf,+inf) integrals by dividing
// the integration in three regions (-inf,-1), (-1,1), (1,inf) and
// calculating the 1st and 3rd term using a x -> 1/x coordinate
// transformation
//
// This class embeds the Gauss-Kronrod integrator from the GNU
// Scientific Library version 1.5 and applies the 10-, 21-, 43- and
// 87-point rule in succession until the required target precision is
// reached
#include "RooFit.h"
#include <assert.h>
#include <assert.h>
#include "Riostream.h"
#include "TMath.h"
#include "RooGaussKronrodIntegrator1D.h"
#include "RooArgSet.h"
#include "RooRealVar.h"
#include "RooNumber.h"
#include "RooNumIntFactory.h"
#include "RooIntegratorBinding.h"
ClassImp(RooGaussKronrodIntegrator1D)
;
// --- From GSL_MATH.h -------------------------------------------
struct gsl_function_struct
{
double (* function) (double x, void * params);
void * params;
};
typedef struct gsl_function_struct gsl_function ;
#define GSL_FN_EVAL(F,x) (*((F)->function))(x,(F)->params)
//----From GSL_INTEGRATION.h ---------------------------------------
int gsl_integration_qng (const gsl_function * f,
double a, double b,
double epsabs, double epsrel,
double *result, double *abserr,
size_t * neval);
//-------------------------------------------------------------------
// Register this class with RooNumIntConfig
static void registerGaussKronrodIntegrator1D(RooNumIntFactory& fact)
{
fact.storeProtoIntegrator(new RooGaussKronrodIntegrator1D(),RooArgSet()) ;
}
static Bool_t dummy = RooNumIntFactory::instance().registerInitializer(®isterGaussKronrodIntegrator1D) ;
RooGaussKronrodIntegrator1D::RooGaussKronrodIntegrator1D()
{
}
RooGaussKronrodIntegrator1D::RooGaussKronrodIntegrator1D(const RooAbsFunc& function, const RooNumIntConfig& config) :
RooAbsIntegrator(function),
_epsAbs(config.epsRel()),
_epsRel(config.epsAbs())
{
// Use this form of the constructor to integrate over the function's default range.
_useIntegrandLimits= kTRUE;
_valid= initialize();
}
RooGaussKronrodIntegrator1D::RooGaussKronrodIntegrator1D(const RooAbsFunc& function,
Double_t xmin, Double_t xmax, const RooNumIntConfig& config) :
RooAbsIntegrator(function),
_epsAbs(config.epsRel()),
_epsRel(config.epsAbs()),
_xmin(xmin),
_xmax(xmax)
{
// Use this form of the constructor to integrate over the function's default range.
_useIntegrandLimits= kFALSE;
_valid= initialize();
}
RooAbsIntegrator* RooGaussKronrodIntegrator1D::clone(const RooAbsFunc& function, const RooNumIntConfig& config) const
{
return new RooGaussKronrodIntegrator1D(function,config) ;
}
Bool_t RooGaussKronrodIntegrator1D::initialize()
{
// Allocate coordinate buffer size after number of function dimensions
_x = new Double_t[_function->getDimension()] ;
return checkLimits();
}
RooGaussKronrodIntegrator1D::~RooGaussKronrodIntegrator1D()
{
delete[] _x ;
}
Bool_t RooGaussKronrodIntegrator1D::setLimits(Double_t xmin, Double_t xmax) {
// Change our integration limits. Return kTRUE if the new limits are
// ok, or otherwise kFALSE. Always returns kFALSE and does nothing
// if this object was constructed to always use our integrand's limits.
if(_useIntegrandLimits) {
cout << "RooGaussKronrodIntegrator1D::setLimits: cannot override integrand's limits" << endl;
return kFALSE;
}
_xmin= xmin;
_xmax= xmax;
return checkLimits();
}
Bool_t RooGaussKronrodIntegrator1D::checkLimits() const {
// Check that our integration range is finite and otherwise return kFALSE.
// Update the limits from the integrand if requested.
if(_useIntegrandLimits) {
assert(0 != integrand() && integrand()->isValid());
_xmin= integrand()->getMinLimit(0);
_xmax= integrand()->getMaxLimit(0);
}
return kTRUE ;
}
double RooGaussKronrodIntegrator1D_GSL_GlueFunction(double x, void *data)
{
RooGaussKronrodIntegrator1D* instance = (RooGaussKronrodIntegrator1D*) data ;
return instance->integrand(instance->xvec(x)) ;
}
Double_t RooGaussKronrodIntegrator1D::integral(const Double_t *yvec)
{
assert(isValid());
// Copy yvec to xvec if provided
if (yvec) {
UInt_t i ; for (i=0 ; i<_function->getDimension()-1 ; i++) {
_x[i+1] = yvec[i] ;
}
}
// Setup glue function
gsl_function F;
F.function = &RooGaussKronrodIntegrator1D_GSL_GlueFunction ;
F.params = this ;
// Return values
double result, error;
size_t neval = 0 ;
// Call GSL implementation of integeator
gsl_integration_qng (&F, _xmin, _xmax, _epsAbs, _epsRel, &result, &error, &neval);
return result;
}
// ----------------------------------------------------------------------------
// ---------- Code below imported from GSL version 1.5 ------------------------
// ----------------------------------------------------------------------------
/*
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define GSL_SUCCESS 0
#define GSL_EBADTOL 13 /* user specified an invalid tolerance */
#define GSL_ETOL 14 /* failed to reach the specified tolerance */
#define GSL_ERROR(a,b) cout << "RooGaussKronrodIntegrator1D::integral() ERROR: " << a << endl ; return b ;
#define GSL_DBL_MIN 2.2250738585072014e-308
#define GSL_DBL_EPSILON 2.2204460492503131e-16
// INCLUDED BELOW #include "qng.c"
#include <config.h>
#include <math.h>
#include <float.h>
#include <stdlib.h>
int gsl_integration_qng (const gsl_function * f,
double a, double b,
double epsabs, double epsrel,
double *result, double *abserr,
size_t * neval);
// INCLUDED BELOW #include "err.c"
static double rescale_error (double err, const double result_abs, const double result_asc) ;
static double
rescale_error (double err, const double result_abs, const double result_asc)
{
err = fabs(err) ;
if (result_asc != 0 && err != 0)
{
double scale = TMath::Power((200 * err / result_asc), 1.5) ;
if (scale < 1)
{
err = result_asc * scale ;
}
else
{
err = result_asc ;
}
}
if (result_abs > GSL_DBL_MIN / (50 * GSL_DBL_EPSILON))
{
double min_err = 50 * GSL_DBL_EPSILON * result_abs ;
if (min_err > err)
{
err = min_err ;
}
}
return err ;
}
// INCLUDED BELOW #include "qng.h"
/* Gauss-Kronrod-Patterson quadrature coefficients for use in
quadpack routine qng. These coefficients were calculated with
101 decimal digit arithmetic by L. W. Fullerton, Bell Labs, Nov
1981. */
/* x1, abscissae common to the 10-, 21-, 43- and 87-point rule */
static const double x1[5] = {
0.973906528517171720077964012084452,
0.865063366688984510732096688423493,
0.679409568299024406234327365114874,
0.433395394129247190799265943165784,
0.148874338981631210884826001129720
} ;
/* w10, weights of the 10-point formula */
static const double w10[5] = {
0.066671344308688137593568809893332,
0.149451349150580593145776339657697,
0.219086362515982043995534934228163,
0.269266719309996355091226921569469,
0.295524224714752870173892994651338
} ;
/* x2, abscissae common to the 21-, 43- and 87-point rule */
static const double x2[5] = {
0.995657163025808080735527280689003,
0.930157491355708226001207180059508,
0.780817726586416897063717578345042,
0.562757134668604683339000099272694,
0.294392862701460198131126603103866
} ;
/* w21a, weights of the 21-point formula for abscissae x1 */
static const double w21a[5] = {
0.032558162307964727478818972459390,
0.075039674810919952767043140916190,
0.109387158802297641899210590325805,
0.134709217311473325928054001771707,
0.147739104901338491374841515972068
} ;
/* w21b, weights of the 21-point formula for abscissae x2 */
static const double w21b[6] = {
0.011694638867371874278064396062192,
0.054755896574351996031381300244580,
0.093125454583697605535065465083366,
0.123491976262065851077958109831074,
0.142775938577060080797094273138717,
0.149445554002916905664936468389821
} ;
/* x3, abscissae common to the 43- and 87-point rule */
static const double x3[11] = {
0.999333360901932081394099323919911,
0.987433402908088869795961478381209,
0.954807934814266299257919200290473,
0.900148695748328293625099494069092,
0.825198314983114150847066732588520,
0.732148388989304982612354848755461,
0.622847970537725238641159120344323,
0.499479574071056499952214885499755,
0.364901661346580768043989548502644,
0.222254919776601296498260928066212,
0.074650617461383322043914435796506
} ;
/* w43a, weights of the 43-point formula for abscissae x1, x3 */
static const double w43a[10] = {
0.016296734289666564924281974617663,
0.037522876120869501461613795898115,
0.054694902058255442147212685465005,
0.067355414609478086075553166302174,
0.073870199632393953432140695251367,
0.005768556059769796184184327908655,
0.027371890593248842081276069289151,
0.046560826910428830743339154433824,
0.061744995201442564496240336030883,
0.071387267268693397768559114425516
} ;
/* w43b, weights of the 43-point formula for abscissae x3 */
static const double w43b[12] = {
0.001844477640212414100389106552965,
0.010798689585891651740465406741293,
0.021895363867795428102523123075149,
0.032597463975345689443882222526137,
0.042163137935191811847627924327955,
0.050741939600184577780189020092084,
0.058379395542619248375475369330206,
0.064746404951445885544689259517511,
0.069566197912356484528633315038405,
0.072824441471833208150939535192842,
0.074507751014175118273571813842889,
0.074722147517403005594425168280423
} ;
/* x4, abscissae of the 87-point rule */
static const double x4[22] = {
0.999902977262729234490529830591582,
0.997989895986678745427496322365960,
0.992175497860687222808523352251425,
0.981358163572712773571916941623894,
0.965057623858384619128284110607926,
0.943167613133670596816416634507426,
0.915806414685507209591826430720050,
0.883221657771316501372117548744163,
0.845710748462415666605902011504855,
0.803557658035230982788739474980964,
0.757005730685495558328942793432020,
0.706273209787321819824094274740840,
0.651589466501177922534422205016736,
0.593223374057961088875273770349144,
0.531493605970831932285268948562671,
0.466763623042022844871966781659270,
0.399424847859218804732101665817923,
0.329874877106188288265053371824597,
0.258503559202161551802280975429025,
0.185695396568346652015917141167606,
0.111842213179907468172398359241362,
0.037352123394619870814998165437704
} ;
/* w87a, weights of the 87-point formula for abscissae x1, x2, x3 */
static const double w87a[21] = {
0.008148377384149172900002878448190,
0.018761438201562822243935059003794,
0.027347451050052286161582829741283,
0.033677707311637930046581056957588,
0.036935099820427907614589586742499,
0.002884872430211530501334156248695,
0.013685946022712701888950035273128,
0.023280413502888311123409291030404,
0.030872497611713358675466394126442,
0.035693633639418770719351355457044,
0.000915283345202241360843392549948,
0.005399280219300471367738743391053,
0.010947679601118931134327826856808,
0.016298731696787335262665703223280,
0.021081568889203835112433060188190,
0.025370969769253827243467999831710,
0.029189697756475752501446154084920,
0.032373202467202789685788194889595,
0.034783098950365142750781997949596,
0.036412220731351787562801163687577,
0.037253875503047708539592001191226
} ;
/* w87b, weights of the 87-point formula for abscissae x4 */
static const double w87b[23] = {
0.000274145563762072350016527092881,
0.001807124155057942948341311753254,
0.004096869282759164864458070683480,
0.006758290051847378699816577897424,
0.009549957672201646536053581325377,
0.012329447652244853694626639963780,
0.015010447346388952376697286041943,
0.017548967986243191099665352925900,
0.019938037786440888202278192730714,
0.022194935961012286796332102959499,
0.024339147126000805470360647041454,
0.026374505414839207241503786552615,
0.028286910788771200659968002987960,
0.030052581128092695322521110347341,
0.031646751371439929404586051078883,
0.033050413419978503290785944862689,
0.034255099704226061787082821046821,
0.035262412660156681033782717998428,
0.036076989622888701185500318003895,
0.036698604498456094498018047441094,
0.037120549269832576114119958413599,
0.037334228751935040321235449094698,
0.037361073762679023410321241766599
} ;
int
gsl_integration_qng (const gsl_function *f,
double a, double b,
double epsabs, double epsrel,
double * result, double * abserr, size_t * neval)
{
double fv1[5], fv2[5], fv3[5], fv4[5];
double savfun[21]; /* array of function values which have been computed */
double res10, res21, res43, res87; /* 10, 21, 43 and 87 point results */
double result_kronrod, err ;
double resabs; /* approximation to the integral of abs(f) */
double resasc; /* approximation to the integral of abs(f-i/(b-a)) */
const double half_length = 0.5 * (b - a);
const double abs_half_length = fabs (half_length);
const double center = 0.5 * (b + a);
const double f_center = GSL_FN_EVAL(f, center);
int k ;
if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28))
{
* result = 0;
* abserr = 0;
* neval = 0;
GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel",
GSL_EBADTOL);
};
/* Compute the integral using the 10- and 21-point formula. */
res10 = 0;
res21 = w21b[5] * f_center;
resabs = w21b[5] * fabs (f_center);
for (k = 0; k < 5; k++)
{
const double abscissa = half_length * x1[k];
const double fval1 = GSL_FN_EVAL(f, center + abscissa);
const double fval2 = GSL_FN_EVAL(f, center - abscissa);
const double fval = fval1 + fval2;
res10 += w10[k] * fval;
res21 += w21a[k] * fval;
resabs += w21a[k] * (fabs (fval1) + fabs (fval2));
savfun[k] = fval;
fv1[k] = fval1;
fv2[k] = fval2;
}
for (k = 0; k < 5; k++)
{
const double abscissa = half_length * x2[k];
const double fval1 = GSL_FN_EVAL(f, center + abscissa);
const double fval2 = GSL_FN_EVAL(f, center - abscissa);
const double fval = fval1 + fval2;
res21 += w21b[k] * fval;
resabs += w21b[k] * (fabs (fval1) + fabs (fval2));
savfun[k + 5] = fval;
fv3[k] = fval1;
fv4[k] = fval2;
}
resabs *= abs_half_length ;
{
const double mean = 0.5 * res21;
resasc = w21b[5] * fabs (f_center - mean);
for (k = 0; k < 5; k++)
{
resasc +=
(w21a[k] * (fabs (fv1[k] - mean) + fabs (fv2[k] - mean))
+ w21b[k] * (fabs (fv3[k] - mean) + fabs (fv4[k] - mean)));
}
resasc *= abs_half_length ;
}
result_kronrod = res21 * half_length;
err = rescale_error ((res21 - res10) * half_length, resabs, resasc) ;
/* test for convergence. */
if (err < epsabs || err < epsrel * fabs (result_kronrod))
{
* result = result_kronrod ;
* abserr = err ;
* neval = 21;
return GSL_SUCCESS;
}
/* compute the integral using the 43-point formula. */
res43 = w43b[11] * f_center;
for (k = 0; k < 10; k++)
{
res43 += savfun[k] * w43a[k];
}
for (k = 0; k < 11; k++)
{
const double abscissa = half_length * x3[k];
const double fval = (GSL_FN_EVAL(f, center + abscissa)
+ GSL_FN_EVAL(f, center - abscissa));
res43 += fval * w43b[k];
savfun[k + 10] = fval;
}
/* test for convergence */
result_kronrod = res43 * half_length;
err = rescale_error ((res43 - res21) * half_length, resabs, resasc);
if (err < epsabs || err < epsrel * fabs (result_kronrod))
{
* result = result_kronrod ;
* abserr = err ;
* neval = 43;
return GSL_SUCCESS;
}
/* compute the integral using the 87-point formula. */
res87 = w87b[22] * f_center;
for (k = 0; k < 21; k++)
{
res87 += savfun[k] * w87a[k];
}
for (k = 0; k < 22; k++)
{
const double abscissa = half_length * x4[k];
res87 += w87b[k] * (GSL_FN_EVAL(f, center + abscissa)
+ GSL_FN_EVAL(f, center - abscissa));
}
/* test for convergence */
result_kronrod = res87 * half_length ;
err = rescale_error ((res87 - res43) * half_length, resabs, resasc);
if (err < epsabs || err < epsrel * fabs (result_kronrod))
{
* result = result_kronrod ;
* abserr = err ;
* neval = 87;
return GSL_SUCCESS;
}
/* failed to converge */
* result = result_kronrod ;
* abserr = err ;
* neval = 87;
// GSL_ERROR("failed to reach tolerance with highest-order rule", GSL_ETOL) ;
return GSL_ETOL ;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.