/*****************************************************************************
* Project: RooFit *
* Package: RooFitCore *
* File: $Id: RooFitResult.cc,v 1.33 2005/06/20 15:44:52 wverkerke Exp $
* Authors: *
* WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
* DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
* *
* Copyright (c) 2000-2005, Regents of the University of California *
* and Stanford University. All rights reserved. *
* *
* Redistribution and use in source and binary forms, *
* with or without modification, are permitted according to the terms *
* listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
*****************************************************************************/
// -- CLASS DESCRIPTION [MISC] --
// RooFitResult is a container class to hold the input and output
// of a PDF fit to a dataset. It contains:
//
// - Values of all constant parameters
// - Initial and final values of floating parameters with error
// - Correlation matrix and global correlation coefficients
// - NLL and EDM at mininum
//
// No references to the fitted PDF and dataset are stored
#include "RooFit.h"
#include <iomanip>
#include <iomanip>
#include "TMinuit.h"
#include "TMarker.h"
#include "TLine.h"
#include "TBox.h"
#include "TGaxis.h"
#include "TMatrix.h"
#include "TVector.h"
#include "RooFitResult.h"
#include "RooArgSet.h"
#include "RooArgList.h"
#include "RooRealVar.h"
#include "RooPlot.h"
#include "RooEllipse.h"
#include "RooRandom.h"
ClassImp(RooFitResult)
;
RooFitResult::RooFitResult(const char* name, const char* title) :
TNamed(name,title), _constPars(0), _initPars(0), _finalPars(0), _globalCorr(0), _randomPars(0), _Lt(0)
{
// Constructor
appendToDir(this,kTRUE) ;
}
// added FMV, 08/13/03
RooFitResult::RooFitResult(const RooFitResult& other) :
TNamed(other),
RooPrintable(other),
RooDirItem(),
_status(other._status),
_covQual(other._covQual),
_numBadNLL(other._numBadNLL),
_minNLL(other._minNLL),
_edm(other._edm),
_randomPars(0),
_Lt(0)
{
// Copy constructor
_constPars = (RooArgList*) other._constPars->snapshot() ;
_initPars = (RooArgList*) other._initPars->snapshot() ;
_finalPars = (RooArgList*) other._finalPars->snapshot() ;
_globalCorr = (RooArgList*) other._globalCorr->snapshot() ;
if (other._randomPars) _randomPars = (RooArgList*) other._randomPars->snapshot() ;
if (other._Lt) _Lt = new TMatrix(*other._Lt);
TIterator* iter = other._corrMatrix.MakeIterator() ;
RooArgList* corrMatrixRow(0);
while ((corrMatrixRow=(RooArgList*)iter->Next()))
_corrMatrix.Add((RooArgList*)corrMatrixRow->snapshot() );
}
RooFitResult::~RooFitResult()
{
// Destructor
if (_constPars) delete _constPars ;
if (_initPars) delete _initPars ;
if (_finalPars) delete _finalPars ;
if (_globalCorr) delete _globalCorr;
if (_randomPars) delete _randomPars;
if (_Lt) delete _Lt;
_corrMatrix.Delete();
removeFromDir(this) ;
}
void RooFitResult::setConstParList(const RooArgList& list)
{
// Fill the list of constant parameters
if (_constPars) delete _constPars ;
_constPars = (RooArgList*) list.snapshot() ;
}
void RooFitResult::setInitParList(const RooArgList& list)
{
// Fill the list of initial values of the floating parameters
if (_initPars) delete _initPars ;
_initPars = (RooArgList*) list.snapshot() ;
}
void RooFitResult::setFinalParList(const RooArgList& list)
{
// Fill the list of final values of the floating parameters
if (_finalPars) delete _finalPars ;
_finalPars = (RooArgList*) list.snapshot() ;
}
RooPlot *RooFitResult::plotOn(RooPlot *frame, const char *parName1, const char *parName2,
const char *options) const {
// Add objects to a 2D plot that represent the fit results for the
// two named parameters. The input frame with the objects added is
// returned, or zero in case of an error. Which objects are added
// are determined by the options string which should be a concatenation
// of the following (not case sensitive):
//
// M - a marker at the best fit result
// E - an error ellipse calculated at 1-sigma using the error matrix at the minimum
// 1 - the 1-sigma error bar for parameter 1
// 2 - the 1-sigma error bar for parameter 2
// B - the bounding box for the error ellipse
// H - a line and horizontal axis for reading off the correlation coefficient
// V - a line and vertical axis for reading off the correlation coefficient
// A - draw axes for reading off the correlation coefficients with the H or V options
//
// You can change the attributes of objects in the returned RooPlot using the
// various RooPlot::getAttXxx(name) member functions, e.g.
//
// plot->getAttLine("contour")->SetLineStyle(kDashed);
//
// Use plot->Print() for a list of all objects and their names (unfortunately most
// of the ROOT builtin graphics objects like TLine are unnamed). Drag the left mouse
// button along the labels of either axis button to interactively zoom in a plot.
// lookup the input parameters by name: we require that they were floated in our fit
const RooRealVar *par1= dynamic_cast<const RooRealVar*>(floatParsFinal().find(parName1));
if(0 == par1) {
cout << "RooFitResult::correlationPlot: parameter not floated in fit: " << parName1 << endl;
return 0;
}
const RooRealVar *par2= dynamic_cast<const RooRealVar*>(floatParsFinal().find(parName2));
if(0 == par2) {
cout << "RooFitResult::correlationPlot: parameter not floated in fit: " << parName2 << endl;
return 0;
}
// options are not case sensitive
TString opt(options);
opt.ToUpper();
// lookup the 2x2 covariance matrix elements for these variables
Double_t x1= par1->getVal();
Double_t x2= par2->getVal();
Double_t s1= par1->getError();
Double_t s2= par2->getError();
Double_t rho= correlation(parName1, parName2);
// add a 1-sigma error ellipse, if requested
if(opt.Contains("E")) {
RooEllipse *contour= new RooEllipse("contour",x1,x2,s1,s2,rho);
frame->addPlotable(contour);
}
// add the error bar for parameter 1, if requested
if(opt.Contains("1")) {
TLine *hline= new TLine(x1-s1,x2,x1+s1,x2);
hline->SetLineColor(kRed);
frame->addObject(hline);
}
if(opt.Contains("2")) {
TLine *vline= new TLine(x1,x2-s2,x1,x2+s2);
vline->SetLineColor(kRed);
frame->addObject(vline);
}
if(opt.Contains("B")) {
TBox *box= new TBox(x1-s1,x2-s2,x1+s1,x2+s2);
box->SetLineStyle(kDashed);
box->SetLineColor(kRed);
box->SetFillStyle(0);
frame->addObject(box);
}
if(opt.Contains("H")) {
TLine *line= new TLine(x1-rho*s1,x2-s2,x1+rho*s1,x2+s2);
line->SetLineStyle(kDashed);
line->SetLineColor(kBlue);
frame->addObject(line);
if(opt.Contains("A")) {
TGaxis *axis= new TGaxis(x1-s1,x2-s2,x1+s1,x2-s2,-1.,+1.,502,"-=");
axis->SetLineColor(kBlue);
frame->addObject(axis);
}
}
if(opt.Contains("V")) {
TLine *line= new TLine(x1-s1,x2-rho*s2,x1+s1,x2+rho*s2);
line->SetLineStyle(kDashed);
line->SetLineColor(kBlue);
frame->addObject(line);
if(opt.Contains("A")) {
TGaxis *axis= new TGaxis(x1-s1,x2-s2,x1-s1,x2+s2,-1.,+1.,502,"-=");
axis->SetLineColor(kBlue);
frame->addObject(axis);
}
}
// add a marker at the fitted value, if requested
if(opt.Contains("M")) {
TMarker *marker= new TMarker(x1,x2,20);
marker->SetMarkerColor(kBlack);
frame->addObject(marker);
}
return frame;
}
const RooArgList& RooFitResult::randomizePars() const {
// Return a list of floating parameter values that are perturbed from the final
// fit values by random amounts sampled from the covariance matrix. The returned
// object is overwritten with each call and belongs to the RooFitResult. Uses
// the "square root method" to decompose the covariance matrix, which makes inverting
// it unnecessary.
Int_t nPar= _finalPars->getSize();
if(0 == _randomPars) { // first-time initialization
assert(0 != _finalPars);
// create the list of random values to fill
_randomPars= (RooArgList*)_finalPars->snapshot();
// calculate the elements of the upper-triangular matrix L that gives Lt*L = C
// where Lt is the transpose of L (the "square-root method")
TMatrix L(nPar,nPar);
for(Int_t iPar= 0; iPar < nPar; iPar++) {
// calculate the diagonal term first
L(iPar,iPar)= covariance(iPar,iPar);
for(Int_t k= 0; k < iPar; k++) {
Double_t tmp= L(k,iPar);
L(iPar,iPar)-= tmp*tmp;
}
L(iPar,iPar)= sqrt(L(iPar,iPar));
// then the off-diagonal terms
for(Int_t jPar= iPar+1; jPar < nPar; jPar++) {
L(iPar,jPar)= covariance(iPar,jPar);
for(Int_t k= 0; k < iPar; k++) {
L(iPar,jPar)-= L(k,iPar)*L(k,jPar);
}
L(iPar,jPar)/= L(iPar,iPar);
}
}
// remember Lt
_Lt= new TMatrix(TMatrix::kTransposed,L);
}
else {
// reset to the final fit values
*_randomPars= *_finalPars;
}
// create a vector of unit Gaussian variables
TVector g(nPar);
for(Int_t k= 0; k < nPar; k++) g(k)= RooRandom::gaussian();
// multiply this vector by Lt to introduce the appropriate correlations
g*= (*_Lt);
// add the mean value offsets and store the results
TIterator *iter= _randomPars->createIterator();
RooRealVar *par(0);
Int_t index(0);
while((0 != (par= (RooRealVar*)iter->Next()))) {
par->setVal(par->getVal() + g(index++));
}
delete iter;
return *_randomPars;
}
Double_t RooFitResult::correlation(const char* parname1, const char* parname2) const
{
// Return the correlation between parameters 'par1' and 'par2'
const RooArgList* row = correlation(parname1) ;
if (!row) return 0. ;
RooAbsArg* arg = _initPars->find(parname2) ;
if (!arg) {
cout << "RooFitResult::correlation: variable " << parname2 << " not a floating parameter in fit" << endl ;
return 0. ;
}
return ((RooRealVar*)row->at(_initPars->index(arg)))->getVal() ;
}
const RooArgList* RooFitResult::correlation(const char* parname) const
{
// Return the set of correlation coefficients of parameter 'par' with
// all other floating parameters
RooAbsArg* arg = _initPars->find(parname) ;
if (!arg) {
cout << "RooFitResult::correlation: variable " << parname << " not a floating parameter in fit" << endl ;
return 0 ;
}
return (RooArgList*)_corrMatrix.At(_initPars->index(arg)) ;
}
Double_t RooFitResult::globalCorr(const char* parname)
{
// Return the global correlation of the named parameter
RooAbsArg* arg = _initPars->find(parname) ;
if (!arg) {
cout << "RooFitResult::globalCorr: variable " << parname << " not a floating parameter in fit" << endl ;
return 0 ;
}
if (_globalCorr) {
return ((RooAbsReal*)_globalCorr->at(_initPars->index(arg)))->getVal() ;
} else {
return 1.0 ;
}
}
const RooArgList* RooFitResult::globalCorr()
{
// Return the list of all global correlations
return _globalCorr ;
}
Double_t RooFitResult::correlation(Int_t row, Int_t col) const {
// Return a correlation matrix element addressed with numeric indices.
const RooArgList *rowVec= (const RooArgList*)_corrMatrix.At(row);
assert(0 != rowVec);
const RooRealVar *elem= (const RooRealVar*)rowVec->at(col);
assert(0 != elem);
return elem->getVal();
}
Double_t RooFitResult::covariance(Int_t row, Int_t col) const {
// Return the covariance matrix element addressed with numeric indices.
const RooRealVar *rowVar= (const RooRealVar*)_finalPars->at(row);
const RooRealVar *colVar= (const RooRealVar*)_finalPars->at(col);
assert(0 != rowVar && 0 != colVar);
return rowVar->getError()*colVar->getError()*correlation(row,col);
}
void RooFitResult::printToStream(ostream& os, PrintOption opt, TString indent) const
{
// Print fit result to stream 'os'. In Verbose mode, the contant parameters and
// the initial and final values of the floating parameters are printed.
// Standard mode only the final values of the floating parameters are printed
os << endl
<< indent << " RooFitResult: minimized FCN value: " << _minNLL << ", estimated distance to minimum: " << _edm << endl
<< indent << " coviarance matrix quality: " ;
switch(_covQual) {
case 0: os << "Not calculated at all" ; break ;
case 1: os << "Approximation only, not accurate" ; break ;
case 2: os << "Full matrix, but forced positive-definite" ; break ;
case 3: os << "Full, accurate covariance matrix" ; break ;
}
os << endl
<< endl ;
Int_t i ;
if (opt>=Verbose) {
if (_constPars->getSize()>0) {
os << indent << " Constant Parameter Value " << endl
<< indent << " -------------------- ------------" << endl ;
for (i=0 ; i<_constPars->getSize() ; i++) {
os << indent << " " << setw(20) << ((RooAbsArg*)_constPars->at(i))->GetName()
<< " " << setw(12) << Form("%12.4e",((RooRealVar*)_constPars->at(i))->getVal())
<< endl ;
}
os << endl ;
}
// Has any parameter asymmetric errors?
Bool_t doAsymErr(kFALSE) ;
for (i=0 ; i<_finalPars->getSize() ; i++) {
if (((RooRealVar*)_finalPars->at(i))->hasAsymError()) {
doAsymErr=kTRUE ;
break ;
}
}
if (doAsymErr) {
os << indent << " Floating Parameter InitialValue FinalValue (+HiError,-LoError) GblCorr." << endl
<< indent << " -------------------- ------------ ---------------------------------- --------" << endl ;
} else {
os << indent << " Floating Parameter InitialValue FinalValue +/- Error GblCorr." << endl
<< indent << " -------------------- ------------ -------------------------- --------" << endl ;
}
for (i=0 ; i<_finalPars->getSize() ; i++) {
os << indent << " " << setw(20) << ((RooAbsArg*)_finalPars->at(i))->GetName() ;
os << indent << " " << setw(12) << Form("%12.4e",((RooRealVar*)_initPars->at(i))->getVal())
<< indent << " " << setw(12) << Form("%12.4e",((RooRealVar*)_finalPars->at(i))->getVal()) ;
if (((RooRealVar*)_finalPars->at(i))->hasAsymError()) {
os << setw(21) << Form(" (+%8.2e,-%8.2e)",((RooRealVar*)_finalPars->at(i))->getAsymErrorHi(),
-1*((RooRealVar*)_finalPars->at(i))->getAsymErrorLo()) ;
} else {
Double_t err = ((RooRealVar*)_finalPars->at(i))->getError() ;
os << (doAsymErr?" ":"") << " +/- " << setw(9) << Form("%9.2e",err) ;
}
if (_globalCorr) {
os << " " << setw(8) << Form("%8.6f" ,((RooRealVar*)_globalCorr->at(i))->getVal()) ;
} else {
os << " <none>" ;
}
os << endl ;
}
} else {
os << indent << " Floating Parameter FinalValue +/- Error " << endl
<< indent << " -------------------- --------------------------" << endl ;
for (i=0 ; i<_finalPars->getSize() ; i++) {
Double_t err = ((RooRealVar*)_finalPars->at(i))->getError() ;
os << indent << " " << setw(20) << ((RooAbsArg*)_finalPars->at(i))->GetName()
<< " " << setw(12) << Form("%12.4e",((RooRealVar*)_finalPars->at(i))->getVal())
<< " +/- " << setw(9) << Form("%9.2e",err)
<< endl ;
}
}
os << endl ;
}
void RooFitResult::fillCorrMatrix()
{
// Extract the correlation matrix and the global correlation coefficients from the MINUIT memory buffer
// and fill the internal arrays.
// Sanity check
if (gMinuit->fNpar <= 1) {
cout << "RooFitResult::fillCorrMatrix: number of floating parameters <=1, correlation matrix not filled" << endl ;
return ;
}
if (!_initPars) {
cout << "RooFitResult::fillCorrMatrix: ERROR: list of initial parameters must be filled first" << endl ;
return ;
}
// Delete eventual prevous correlation data holders
if (_globalCorr) delete _globalCorr ;
_corrMatrix.Delete();
// Build holding arrays for correlation coefficients
_globalCorr = new RooArgList("globalCorrelations") ;
TIterator* vIter = _initPars->createIterator() ;
RooAbsArg* arg ;
Int_t idx(0) ;
while((arg=(RooAbsArg*)vIter->Next())) {
// Create global correlation value holder
TString gcName("GC[") ;
gcName.Append(arg->GetName()) ;
gcName.Append("]") ;
TString gcTitle(arg->GetTitle()) ;
gcTitle.Append(" Global Correlation") ;
_globalCorr->addOwned(*(new RooRealVar(gcName.Data(),gcTitle.Data(),0.))) ;
// Create array with correlation holders for this parameter
TString name("C[") ;
name.Append(arg->GetName()) ;
name.Append(",*]") ;
RooArgList* corrMatrixRow = new RooArgList(name.Data()) ;
_corrMatrix.Add(corrMatrixRow) ;
TIterator* vIter2 = _initPars->createIterator() ;
RooAbsArg* arg2 ;
while((arg2=(RooAbsArg*)vIter2->Next())) {
TString cName("C[") ;
cName.Append(arg->GetName()) ;
cName.Append(",") ;
cName.Append(arg2->GetName()) ;
cName.Append("]") ;
TString cTitle("Correlation between ") ;
cTitle.Append(arg->GetName()) ;
cTitle.Append(" and ") ;
cTitle.Append(arg2->GetName()) ;
corrMatrixRow->addOwned(*(new RooRealVar(cName.Data(),cTitle.Data(),0.))) ;
}
delete vIter2 ;
idx++ ;
}
delete vIter ;
TIterator *gcIter = _globalCorr->createIterator() ;
TIterator *parIter = _finalPars->createIterator() ;
// Extract correlation information for MINUIT (code taken from TMinuit::mnmatu() )
// WVE: This code directly manipulates minuit internal workspace,
// if TMinuit code changes this may need updating
Int_t ndex, i, j, m, n, ncoef, nparm, /*id,*/ it, ix ;
Int_t ndi, ndj /*, iso, isw2, isw5*/;
ncoef = (gMinuit->fNpagwd - 19) / 6;
nparm = TMath::Min(gMinuit->fNpar,ncoef);
RooRealVar* gcVal = 0;
for (i = 1; i <= gMinuit->fNpar; ++i) {
ix = gMinuit->fNexofi[i-1];
ndi = i*(i + 1) / 2;
for (j = 1; j <= gMinuit->fNpar; ++j) {
m = TMath::Max(i,j);
n = TMath::Min(i,j);
ndex = m*(m-1) / 2 + n;
ndj = j*(j + 1) / 2;
gMinuit->fMATUvline[j-1] = gMinuit->fVhmat[ndex-1] / TMath::Sqrt(TMath::Abs(gMinuit->fVhmat[ndi-1]*gMinuit->fVhmat[ndj-1]));
}
nparm = TMath::Min(gMinuit->fNpar,ncoef);
// Find the next global correlation slot to fill, skipping fixed parameters
gcVal = (RooRealVar*) gcIter->Next() ;
gcVal->setVal(gMinuit->fGlobcc[i-1]) ;
// Fill a row of the correlation matrix
TIterator* cIter = ((RooArgList*)_corrMatrix.At(i-1))->createIterator() ;
for (it = 1; it <= gMinuit->fNpar ; ++it) {
RooRealVar* cVal = (RooRealVar*) cIter->Next() ;
cVal->setVal(gMinuit->fMATUvline[it-1]) ;
}
delete cIter ;
}
delete gcIter ;
delete parIter ;
}
RooFitResult* RooFitResult::lastMinuitFit(const RooArgList& varList)
{
// Verify length of supplied varList
if (varList.getSize()>0 && varList.getSize()!=gMinuit->fNu) {
cout << "RooFitResult::lastMinuitFit: ERROR: supplied variable list must be either empty " << endl
<< " or match the number of variables of the last fit (" << gMinuit->fNu << ")" << endl ;
return 0 ;
}
// Verify that all members of varList are of type RooRealVar
TIterator* iter = varList.createIterator() ;
RooAbsArg* arg ;
while((arg=(RooAbsArg*)iter->Next())) {
if (!dynamic_cast<RooRealVar*>(arg)) {
cout << "RooFitResult::lastMinuitFit: ERROR: variable '" << arg->GetName() << "' is not of type RooRealVar" << endl ;
return 0 ;
}
}
delete iter ;
RooFitResult* r = new RooFitResult("lastMinuitFit","Last MINUIT fit") ;
// Extract names of fit parameters from MINUIT
// and construct corresponding RooRealVars
RooArgList constPars("constPars") ;
RooArgList floatPars("floatPars") ;
Int_t i ;
for (i = 1; i <= gMinuit->fNu; ++i) {
if (gMinuit->fNvarl[i-1] < 0) continue;
Int_t l = gMinuit->fNiofex[i-1];
TString varName(gMinuit->fCpnam[i-1]) ;
Bool_t isConst(l==0) ;
Double_t xlo = gMinuit->fAlim[i-1];
Double_t xhi = gMinuit->fBlim[i-1];
Double_t xerr = gMinuit->fWerr[l-1];
Double_t xval = gMinuit->fU[i-1] ;
RooRealVar* var ;
if (varList.getSize()==0) {
if ((xlo<xhi) && !isConst) {
var = new RooRealVar(varName,varName,xval,xlo,xhi) ;
} else {
var = new RooRealVar(varName,varName,xval) ;
}
var->setConstant(isConst) ;
} else {
var = (RooRealVar*) varList.at(i-1)->Clone() ;
var->setConstant(isConst) ;
var->setVal(xval) ;
if (xlo<xhi) {
var->setRange(xlo,xhi) ;
}
if (varName.CompareTo(var->GetName())) {
cout << "RooFitResult::lastMinuitFit: fit parameter '" << varName
<< "' stored in variable '" << var->GetName() << "'" << endl ;
}
}
if (isConst) {
constPars.addOwned(*var) ;
} else {
var->setError(xerr) ;
floatPars.addOwned(*var) ;
}
}
Int_t icode,npari,nparx ;
Double_t fmin,edm,errdef ;
gMinuit->mnstat(fmin,edm,errdef,npari,nparx,icode) ;
r->setConstParList(constPars) ;
r->setInitParList(floatPars) ;
r->setFinalParList(floatPars) ;
r->setMinNLL(fmin) ;
r->setEDM(edm) ;
r->setCovQual(icode) ;
r->setStatus(gMinuit->fStatus) ;
r->fillCorrMatrix() ;
return r ;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.