/*****************************************************************************
* Project: RooFit *
* Package: RooFitCore *
* File: $Id: RooCurve.cc,v 1.48 2005/06/23 07:37:30 wverkerke Exp $
* Authors: *
* WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
* DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
* *
* Copyright (c) 2000-2005, Regents of the University of California *
* and Stanford University. All rights reserved. *
* *
* Redistribution and use in source and binary forms, *
* with or without modification, are permitted according to the terms *
* listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
*****************************************************************************/
// -- CLASS DESCRIPTION [PLOT] --
// A RooCurve is a one-dimensional graphical representation of a real-valued function.
// A curve is approximated by straight line segments with endpoints chosen to give
// a "good" approximation to the true curve. The goodness of the approximation is
// controlled by a precision and a resolution parameter. To view the points where
// a function y(x) is actually evaluated to approximate a smooth curve, use:
//
// RooPlot *p= y.plotOn(x.frame());
// p->getAttMarker("curve_y")->SetMarkerStyle(20);
// p->setDrawOptions("curve_y","PL");
// p->Draw();
#include "RooFit.h"
#include "RooCurve.h"
#include "RooCurve.h"
#include "RooHist.h"
#include "RooAbsReal.h"
#include "RooArgSet.h"
#include "RooRealVar.h"
#include "RooRealIntegral.h"
#include "RooRealBinding.h"
#include "RooScaledFunc.h"
#include "Riostream.h"
#include <iomanip>
#include <math.h>
#include <assert.h>
#include <deque>
#include <algorithm>
ClassImp(RooCurve)
RooCurve::RooCurve() {
initialize();
}
RooCurve::RooCurve(const RooAbsReal &f, RooAbsRealLValue &x, Double_t xlo, Double_t xhi, Int_t xbins,
Double_t scaleFactor, const RooArgSet *normVars, Double_t prec, Double_t resolution,
Bool_t shiftToZero, WingMode wmode) {
// Create a 1-dim curve of the value of the specified real-valued expression
// as a function of x. Use the optional precision parameter to control
// how precisely the smooth curve is rasterized. Use the optional argument set
// to specify how the expression should be normalized. Use the optional scale
// factor to rescale the expression after normalization.
// If shiftToZero is set, the entire curve is shift down to make the lowest
// point in of the curve go through zero.
// grab the function's name and title
TString name("curve_");
name.Append(f.GetName());
SetName(name.Data());
TString title(f.GetTitle());
SetTitle(title.Data());
// append " ( [<funit> ][/ <xunit> ])" to our y-axis label if necessary
if(0 != strlen(f.getUnit()) || 0 != strlen(x.getUnit())) {
title.Append(" ( ");
if(0 != strlen(f.getUnit())) {
title.Append(f.getUnit());
title.Append(" ");
}
if(0 != strlen(x.getUnit())) {
title.Append("/ ");
title.Append(x.getUnit());
title.Append(" ");
}
title.Append(")");
}
setYAxisLabel(title.Data());
RooAbsFunc *funcPtr = 0;
RooAbsFunc *rawPtr = 0;
funcPtr= f.bindVars(x,normVars,kTRUE);
// apply a scale factor if necessary
if(scaleFactor != 1) {
rawPtr= funcPtr;
funcPtr= new RooScaledFunc(*rawPtr,scaleFactor);
}
assert(0 != funcPtr);
// calculate the points to add to our curve
Double_t prevYMax = getYAxisMax() ;
addPoints(*funcPtr,xlo,xhi,xbins+1,prec,resolution,wmode);
initialize();
// cleanup
delete funcPtr;
if(rawPtr) delete rawPtr;
if (shiftToZero) shiftCurveToZero(prevYMax) ;
// Adjust limits
Int_t i ;
for (i=0 ; i<GetN() ; i++) {
Double_t x,y ;
GetPoint(i,x,y) ;
updateYAxisLimits(y);
}
}
RooCurve::RooCurve(const char *name, const char *title, const RooAbsFunc &func,
Double_t xlo, Double_t xhi, UInt_t minPoints, Double_t prec, Double_t resolution,
Bool_t shiftToZero, WingMode wmode) {
SetName(name);
SetTitle(title);
Double_t prevYMax = getYAxisMax() ;
addPoints(func,xlo,xhi,minPoints+1,prec,resolution,wmode);
initialize();
if (shiftToZero) shiftCurveToZero(prevYMax) ;
// Adjust limits
Int_t i ;
for (i=0 ; i<GetN() ; i++) {
Double_t x,y ;
GetPoint(i,x,y) ;
updateYAxisLimits(y);
}
}
RooCurve::RooCurve(const char* name, const char* title, const RooCurve& c1, const RooCurve& c2, Double_t scale1, Double_t scale2)
{
initialize() ;
SetName(name) ;
SetTitle(title) ;
// Make deque of points in X
deque<Double_t> pointList ;
Double_t x,y ;
// Add X points of C1
Int_t i1,n1 = c1.GetN() ;
for (i1=0 ; i1<n1 ; i1++) {
const_cast<RooCurve&>(c1).GetPoint(i1,x,y) ;
pointList.push_back(x) ;
}
// Add X points of C2
Int_t i2,n2 = c2.GetN() ;
for (i2=0 ; i2<n2 ; i2++) {
const_cast<RooCurve&>(c2).GetPoint(i2,x,y) ;
pointList.push_back(x) ;
}
// Sort X points
sort(pointList.begin(),pointList.end()) ;
// Loop over X points
deque<double>::iterator iter ;
Double_t last(-RooNumber::infinity) ;
for (iter=pointList.begin() ; iter!=pointList.end() ; ++iter) {
if ((*iter-last)>1e-10) {
// Add OR of points to new curve, skipping duplicate points within tolerance
addPoint(*iter,scale1*c1.interpolate(*iter)+scale2*c2.interpolate(*iter)) ;
}
last = *iter ;
}
}
RooCurve::~RooCurve()
{
}
void RooCurve::initialize()
{
// Perform initialization that is common to all constructors.
// set default line width in pixels
SetLineWidth(3);
// set default line color
SetLineColor(kBlue);
}
void RooCurve::shiftCurveToZero(Double_t prevYMax)
// Find lowest point in curve and move all points in curve so that
// lowest point will go exactly through zero
{
Int_t i ;
Double_t minVal(1e30) ;
Double_t maxVal(-1e30) ;
// First iteration, find current lowest point
for (i=1 ; i<GetN()-1 ; i++) {
Double_t x,y ;
GetPoint(i,x,y) ;
if (y<minVal) minVal=y ;
if (y>maxVal) maxVal=y ;
}
// Second iteration, lower all points by minVal
for (i=1 ; i<GetN()-1 ; i++) {
Double_t x,y ;
GetPoint(i,x,y) ;
SetPoint(i,x,y-minVal) ;
}
// Check if y-axis range needs readjustment
if (getYAxisMax()>prevYMax) {
Double_t newMax = maxVal - minVal ;
setYAxisLimits(getYAxisMin(), newMax<prevYMax ? prevYMax : newMax) ;
}
}
void RooCurve::addPoints(const RooAbsFunc &func, Double_t xlo, Double_t xhi,
Int_t minPoints, Double_t prec, Double_t resolution, WingMode wmode) {
// Add points calculated with the specified function, over the range (xlo,xhi).
// Add at least minPoints equally spaced points, and add sufficient points so that
// the maximum deviation from the final straight-line segements is prec*(ymax-ymin),
// down to a minimum horizontal spacing of resolution*(xhi-xlo).
// check the inputs
if(!func.isValid()) {
cout << fName << "::addPoints: input function is not valid" << endl;
return;
}
if(minPoints <= 0 || xhi <= xlo) {
cout << fName << "::addPoints: bad input (nothing added)" << endl;
return;
}
// Perform a coarse scan of the function to estimate its y range.
// Save the results so we do not have to re-evaluate at the scan points.
Double_t *yval= new Double_t[minPoints];
assert(0 != yval);
Double_t x,dx= (xhi-xlo)/(minPoints-1.);
Int_t step;
Double_t ymax(-1e30), ymin(1e30) ;
for(step= 0; step < minPoints; step++) {
x= xlo + step*dx;
if (step==minPoints-1) x-=1e-15 ;
yval[step]= func(&x);
if (yval[step]>ymax) ymax=yval[step] ;
if (yval[step]<ymin) ymin=yval[step] ;
}
Double_t yrangeEst=(ymax-ymin) ;
// store points of the coarse scan and calculate any refinements necessary
Double_t minDx= resolution*(xhi-xlo);
Double_t x1,x2= xlo;
if (wmode==Extended) {
addPoint(xlo-dx,0) ;
addPoint(xlo-dx,yval[0]) ;
} else if (wmode==Straight) {
addPoint(xlo,0) ;
}
addPoint(xlo,yval[0]);
for(step= 1; step < minPoints; step++) {
x1= x2;
x2= xlo + step*dx;
addRange(func,x1,x2,yval[step-1],yval[step],prec*yrangeEst,minDx);
}
addPoint(xhi,yval[minPoints-1]) ;
if (wmode==Extended) {
addPoint(xhi+dx,yval[minPoints-1]) ;
addPoint(xhi+dx,0) ;
} else if (wmode==Straight) {
addPoint(xhi,0) ;
}
// cleanup
delete [] yval;
}
void RooCurve::addRange(const RooAbsFunc& func, Double_t x1, Double_t x2,
Double_t y1, Double_t y2, Double_t minDy, Double_t minDx) {
// Fill the range (x1,x2) with points calculated using func(&x). No point will
// be added at x1, and a point will always be added at x2. The density of points
// will be calculated so that the maximum deviation from a straight line
// approximation is prec*(ymax-ymin) down to the specified minimum horizontal spacing.
// calculate our value at the midpoint of this range
Double_t xmid= 0.5*(x1+x2);
Double_t ymid= func(&xmid);
// test if the midpoint is sufficiently close to a straight line across this interval
Double_t dy= ymid - 0.5*(y1+y2);
if((xmid - x1 >= minDx) && fabs(dy)>0 && fabs(dy) >= minDy) {
// fill in each subrange
addRange(func,x1,xmid,y1,ymid,minDy,minDx);
addRange(func,xmid,x2,ymid,y2,minDy,minDx);
}
else {
// add the endpoint
addPoint(x2,y2);
}
}
void RooCurve::addPoint(Double_t x, Double_t y) {
// Add a point with the specified coordinates. Update our y-axis limits.
// cout << "RooCurve("<< GetName() << ") adding point at (" << x << "," << y << ")" << endl ;
Int_t next= GetN();
SetPoint(next, x, y);
}
Double_t RooCurve::getFitRangeNEvt() const {
return 1;
}
Double_t RooCurve::getFitRangeNEvt(Double_t, Double_t) const
{
return 1 ;
}
Double_t RooCurve::getFitRangeBinW() const {
return 0 ;
}
void RooCurve::printToStream(ostream& os, PrintOption opt, TString indent) const {
// Print info about this histogram to the specified output stream.
//
// Standard: number of entries
// Verbose: print points on curve
oneLinePrint(os,*this);
RooPlotable::printToStream(os,opt,indent);
if(opt >= Standard) {
os << indent << "--- RooCurve ---" << endl;
Int_t n= GetN();
os << indent << " Contains " << n << " points" << endl;
if(opt >= Verbose) {
os << indent << " Graph points:" << endl;
for(Int_t i= 0; i < n; i++) {
os << indent << setw(3) << i << ") x = " << fX[i] << " , y = " << fY[i] << endl;
}
}
}
}
Double_t RooCurve::chiSquare(const RooHist& hist, Int_t nFitParam) const
{
Int_t i,np = hist.GetN() ;
Double_t x,y,eyl,eyh ;
Double_t hbinw2 = hist.getNominalBinWidth()/2 ;
// Find starting and ending bin of histogram based on range of RooCurve
Double_t xstart,xstop ;
#if ROOT_VERSION_CODE >= ROOT_VERSION(4,0,1)
GetPoint(0,xstart,y) ;
GetPoint(GetN()-1,xstop,y) ;
#else
const_cast<RooCurve*>(this)->GetPoint(0,xstart,y) ;
const_cast<RooCurve*>(this)->GetPoint(GetN()-1,xstop,y) ;
#endif
Int_t nbin(0) ;
Double_t chisq(0) ;
for (i=0 ; i<np ; i++) {
// Retrieve histogram contents
((RooHist&)hist).GetPoint(i,x,y) ;
// Check if point is in range of curve
if (x<xstart || x>xstop) continue ;
nbin++ ;
eyl = hist.GetEYlow()[i] ;
eyh = hist.GetEYhigh()[i] ;
// Integrate function over this bin
Double_t avg = average(x-hbinw2,x+hbinw2) ;
// Add pull^2 to chisq
if (y!=0) {
Double_t pull = (y>avg) ? ((y-avg)/eyl) : ((y-avg)/eyh) ;
chisq += pull*pull ;
}
}
// Return chisq/nDOF
return chisq / (nbin-nFitParam) ;
}
Double_t RooCurve::average(Double_t xFirst, Double_t xLast) const
{
// Average curve between given values by integrating curve between points
// and dividing by xLast-xFirst
if (xFirst>=xLast) {
cout << "RooCurve::average(" << GetName()
<< ") invalid range (" << xFirst << "," << xLast << ")" << endl ;
return 0 ;
}
// Find Y values and begin and end points
Double_t yFirst = interpolate(xFirst,1e-10) ;
Double_t yLast = interpolate(xLast,1e-10) ;
// Find first and last mid points
Int_t ifirst = findPoint(xFirst,1e10) ;
Int_t ilast = findPoint(xLast,1e10) ;
Double_t xFirstPt,yFirstPt,xLastPt,yLastPt ;
const_cast<RooCurve&>(*this).GetPoint(ifirst,xFirstPt,yFirstPt) ;
const_cast<RooCurve&>(*this).GetPoint(ilast,xLastPt,yLastPt) ;
Double_t tolerance=1e-3*(xLast-xFirst) ;
// Handle trivial scenario -- no midway points, point only at or outside given range
if (ilast-ifirst==1 &&(xFirstPt-xFirst)<-1*tolerance && (xLastPt-xLast)>tolerance) {
return 0.5*(yFirst+yLast) ;
}
// If first point closest to xFirst is at xFirst or before xFirst take the next point
// as the first midway point
if ((xFirstPt-xFirst)<-1*tolerance) {
ifirst++ ;
const_cast<RooCurve&>(*this).GetPoint(ifirst,xFirstPt,yFirstPt) ;
}
// If last point closest to yLast is at yLast or beyond yLast the the previous point
// as the last midway point
if ((xLastPt-xLast)>tolerance) {
ilast-- ;
const_cast<RooCurve&>(*this).GetPoint(ilast,xLastPt,yLastPt) ;
}
Double_t sum(0),x1,y1,x2,y2 ;
// Trapezoid integration from lower edge to first midpoint
sum += (xFirstPt-xFirst)*(yFirst+yFirstPt)/2 ;
// Trapezoid integration between midpoints
Int_t i ;
for (i=ifirst ; i<ilast ; i++) {
const_cast<RooCurve&>(*this).GetPoint(i,x1,y1) ;
const_cast<RooCurve&>(*this).GetPoint(i+1,x2,y2) ;
sum += (x2-x1)*(y1+y2)/2 ;
}
// Trapezoid integration from last midpoint to upper edge
sum += (xLast-xLastPt)*(yLastPt+yLast)/2 ;
return sum/(xLast-xFirst) ;
}
Int_t RooCurve::findPoint(Double_t xvalue, Double_t tolerance) const
{
Double_t delta(999.),x,y ;
Int_t i,n = GetN() ;
Int_t ibest(-1) ;
for (i=0 ; i<n ; i++) {
((RooCurve&)*this).GetPoint(i,x,y) ;
if (fabs(xvalue-x)<delta) {
delta = fabs(xvalue-x) ;
ibest = i ;
}
}
return (delta<tolerance)?ibest:-1 ;
}
Double_t RooCurve::interpolate(Double_t xvalue, Double_t tolerance) const
{
// Find best point
int n = GetN() ;
int ibest = findPoint(xvalue,1e10) ;
// Get position of best point
Double_t xbest, ybest ;
const_cast<RooCurve*>(this)->GetPoint(ibest,xbest,ybest) ;
// Handle trivial case of being dead on
if (fabs(xbest-xvalue)<tolerance) {
return ybest ;
}
// Get nearest point on other side w.r.t. xvalue
Double_t xother,yother, retVal(0) ;
if (xbest<xvalue) {
if (ibest==n-1) {
// Value beyond end requested -- return value of last point
return ybest ;
}
const_cast<RooCurve*>(this)->GetPoint(ibest+1,xother,yother) ;
if (xother==xbest) return ybest ;
retVal = ybest + (yother-ybest)*(xvalue-xbest)/(xother-xbest) ;
} else {
if (ibest==0) {
// Value before 1st point requested -- return value of 1st point
return ybest ;
}
const_cast<RooCurve*>(this)->GetPoint(ibest-1,xother,yother) ;
if (xother==xbest) return ybest ;
retVal = yother + (ybest-yother)*(xvalue-xother)/(xbest-xother) ;
}
return retVal ;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.