/*****************************************************************************
* Project: RooFit *
* Package: RooFitCore *
* File: $Id: RooChi2Var.cc,v 1.19 2005/06/20 15:44:49 wverkerke Exp $
* Authors: *
* WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
* DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
* *
* Copyright (c) 2000-2005, Regents of the University of California *
* and Stanford University. All rights reserved. *
* *
* Redistribution and use in source and binary forms, *
* with or without modification, are permitted according to the terms *
* listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
*****************************************************************************/
// -- CLASS DESCRIPTION [PDF] --
// Class RooChi2Var implements a simple chi^2 calculation from a binned dataset
// and a PDF. The chi^2 is calculated as
//
// / (f_PDF * N_tot/ V_bin) - N_bin \+2
// Sum[bins] | ------------------------------ |
// \ err_bin /
//
// If no user-defined errors are defined for the dataset, poisson errors
// are used. In extended PDF mode, N_tot is substituted with N_expected.
#include "RooFit.h"
#include "RooChi2Var.h"
#include "RooChi2Var.h"
#include "RooDataHist.h"
#include "RooAbsPdf.h"
#include "RooCmdConfig.h"
ClassImp(RooChi2Var)
;
RooArgSet RooChi2Var::_emptySet ;
RooChi2Var::RooChi2Var(const char *name, const char* title, RooAbsPdf& pdf, RooDataHist& data,
const RooCmdArg& arg1,const RooCmdArg& arg2,const RooCmdArg& arg3,
const RooCmdArg& arg4,const RooCmdArg& arg5,const RooCmdArg& arg6,
const RooCmdArg& arg7,const RooCmdArg& arg8,const RooCmdArg& arg9) :
RooAbsOptGoodnessOfFit(name,title,pdf,data,
*(const RooArgSet*)RooCmdConfig::decodeObjOnTheFly("RooChi2Var::RooChi2Var","ProjectedObservables",0,&_emptySet
,arg1,arg2,arg3,arg4,arg5,arg6,arg7,arg8,arg9),
RooCmdConfig::decodeStringOnTheFly("RooChi2Var::RooChi2Var","RangeWithName",0,"",arg1,arg2,arg3,arg4,arg5,arg6,arg7,arg8,arg9),
RooCmdConfig::decodeIntOnTheFly("RooChi2Var::RooChi2Var","NumCPU",0,1,arg1,arg2,arg3,arg4,arg5,arg6,arg7,arg8,arg9),
RooCmdConfig::decodeIntOnTheFly("RooChi2Var::RooChi2Var","Verbose",0,1,arg1,arg2,arg3,arg4,arg5,arg6,arg7,arg8,arg9),
// RooChi2Var constructor. Optional arguments taken
//
// Extended() -- Include extended term in calculation
// DataError() -- Choose between Poisson errors and Sum-of-weights errors
// NumCPU() -- Activate parallel processing feature
// Range() -- Fit only selected region
// SplitRange() -- Fit range is split by index catory of simultaneous PDF
// ConditionalObservables() -- Define projected observables
// Verbose() -- Verbose output of GOF framework
{
RooCmdConfig pc("RooChi2Var::RooChi2Var") ;
pc.defineInt("extended","Extended",0,kFALSE) ;
pc.defineInt("etype","DataError",0,(Int_t)RooDataHist::Poisson) ;
pc.process(arg1) ; pc.process(arg2) ; pc.process(arg3) ;
pc.process(arg4) ; pc.process(arg5) ; pc.process(arg6) ;
pc.process(arg7) ; pc.process(arg8) ; pc.process(arg9) ;
_extended = pc.getInt("extended") ;
_etype = (RooDataHist::ErrorType) pc.getInt("etype") ;
}
RooChi2Var::RooChi2Var(const char *name, const char *title, RooAbsPdf& pdf, RooDataHist& data,
Bool_t extended, const char* cutRange, Int_t nCPU, Bool_t verbose, Bool_t splitCutRange) :
RooAbsOptGoodnessOfFit(name,title,pdf,data,RooArgSet(),cutRange,nCPU,verbose,splitCutRange),
_etype(RooAbsData::Poisson), _extended(extended)
{
}
RooChi2Var::RooChi2Var(const char *name, const char *title, RooAbsPdf& pdf, RooDataHist& data,
const RooArgSet& projDeps, Bool_t extended, const char* cutRange, Int_t nCPU, Bool_t verbose, Bool_t splitCutRange) :
RooAbsOptGoodnessOfFit(name,title,pdf,data,projDeps,cutRange,nCPU,verbose,splitCutRange),
_etype(RooAbsData::Poisson), _extended(extended)
{
}
RooChi2Var::RooChi2Var(const RooChi2Var& other, const char* name) :
RooAbsOptGoodnessOfFit(other,name),
_etype(other._etype),
_extended(other._extended)
{
}
RooChi2Var::~RooChi2Var()
{
}
Double_t RooChi2Var::evaluatePartition(Int_t firstEvent, Int_t lastEvent) const
{
Int_t i ;
Double_t result(0) ;
// Determine total number of data events to be used for PDF normalization
Double_t nDataTotal ;
if (_extended) {
nDataTotal = _pdfClone->expectedEvents(_dataClone->get()) ;
} else {
nDataTotal = _dataClone->sumEntries() ;
}
// Loop over bins of dataset
RooDataHist* data = (RooDataHist*) _dataClone ;
for (i=firstEvent ; i<lastEvent ; i++) {
// get the data values for this event
data->get(i);
Double_t nData = data->weight() ;
Double_t nPdf = _pdfClone->getVal(_normSet) * nDataTotal * data->binVolume() ;
Double_t eExt = nPdf-nData ;
Double_t eIntLo,eIntHi ;
data->weightError(eIntLo,eIntHi,_etype) ;
Double_t eInt = (eExt>0) ? eIntHi : eIntLo ;
// Skip cases where pdf=0 and there is no data
if (eInt==0. && nData==0. && nPdf==0) continue ;
// Return 0 if eInt=0, special handling in MINUIT will follow
if (eInt==0.) {
cout << "RooChi2Var::RooChi2Var(" << GetName() << ") INFINITY ERROR: bin " << i
<< " has zero error, but function is not zero (" << nPdf << ")" << endl ;
return 0 ;
}
result += eExt*eExt/(eInt*eInt) ;
}
return result ;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.