/*****************************************************************************
* Project: RooFit *
* Package: RooFitCore *
* File: $Id: RooAbsRealLValue.cc,v 1.45 2005/06/21 16:42:29 wverkerke Exp $
* Authors: *
* WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
* DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
* *
* Copyright (c) 2000-2005, Regents of the University of California *
* and Stanford University. All rights reserved. *
* *
* Redistribution and use in source and binary forms, *
* with or without modification, are permitted according to the terms *
* listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
*****************************************************************************/
// -- CLASS DESCRIPTION [REAL] --
// RooAbsRealLValue is the common abstract base class for objects that represent a
// real value that may appear on the left hand side of an equation ('lvalue')
// Each implementation must provide a setVal() member to allow direct modification
// of the value. RooAbsRealLValue may be derived, but its functional relation
// to other RooAbsArg must be invertible
//
// This class has methods that export a fit range, but doesn't hold its values
// because these limits may be derived from limits of client object.
// The fit limits serve as integration range when interpreted
// as a dependent and a boundaries when interpreted as a parameter.
#include "RooFit.h"
#include <math.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "TObjString.h"
#include "TTree.h"
#include "TH1.h"
#include "TH2.h"
#include "TH3.h"
#include "RooAbsRealLValue.h"
#include "RooStreamParser.h"
#include "RooRandom.h"
#include "RooPlot.h"
#include "RooArgList.h"
#include "RooAbsBinning.h"
#include "RooBinning.h"
#include "RooUniformBinning.h"
#include "RooCmdConfig.h"
#include "RooTreeData.h"
#include "RooRealVar.h"
ClassImp(RooAbsRealLValue)
RooAbsRealLValue::RooAbsRealLValue(const char *name, const char *title, const char *unit) :
RooAbsReal(name, title, 0, 0, unit)
{
// Constructor
}
RooAbsRealLValue::RooAbsRealLValue(const RooAbsRealLValue& other, const char* name) :
RooAbsReal(other,name), RooAbsLValue(other)
{
// Copy constructor
}
RooAbsRealLValue::~RooAbsRealLValue()
{
// Destructor
}
Bool_t RooAbsRealLValue::inRange(Double_t value, Double_t* clippedValPtr) const
{
// Return kTRUE if the input value is within our fit range. Otherwise, return
// kFALSE and write a clipped value into clippedValPtr if it is non-zero.
// Double_t range = getMax() - getMin() ; // ok for +/-INIFINITY
Double_t clippedValue(value);
Bool_t inRange(kTRUE) ;
// test this value against our upper fit limit
if(hasMax() && value > (getMax()+1e-6)) {
if (clippedValPtr) {
cout << "RooAbsRealLValue::inFitRange(" << GetName() << "): value " << value
<< " rounded down to max limit " << getMax() << endl ;
}
clippedValue = getMax();
inRange = kFALSE ;
}
// test this value against our lower fit limit
if(hasMin() && value < getMin()-1e-6) {
if (clippedValPtr) {
cout << "RooAbsRealLValue::inFitRange(" << GetName() << "): value " << value
<< " rounded up to min limit " << getMin() << endl;
}
clippedValue = getMin();
inRange = kFALSE ;
}
if (clippedValPtr) *clippedValPtr=clippedValue ;
return inRange ;
}
Bool_t RooAbsRealLValue::isValidReal(Double_t value, Bool_t verbose) const
{
// Check if given value is valid
if (!inRange(value)) {
if (verbose)
cout << "RooRealVar::isValid(" << GetName() << "): value " << value
<< " out of range (" << getMin() << " - " << getMax() << ")" << endl ;
return kFALSE ;
}
return kTRUE ;
}
Bool_t RooAbsRealLValue::readFromStream(istream& /*is*/, Bool_t /*compact*/, Bool_t /*verbose*/)
{
// Read object contents from given stream
return kTRUE ;
}
void RooAbsRealLValue::writeToStream(ostream& /*os*/, Bool_t /*compact*/) const
{
// Write object contents to given stream
}
RooAbsArg& RooAbsRealLValue::operator=(Double_t newValue)
{
// Assignment operator from a Double_t
Double_t clipValue ;
// Clip
inRange(newValue,&clipValue) ;
setVal(clipValue) ;
return *this ;
}
RooAbsArg& RooAbsRealLValue::operator=(const RooAbsReal& arg)
{
return operator=(arg.getVal()) ;
}
RooPlot* RooAbsRealLValue::frame(const RooCmdArg& arg1, const RooCmdArg& arg2, const RooCmdArg& arg3, const RooCmdArg& arg4,
const RooCmdArg& arg5, const RooCmdArg& arg6, const RooCmdArg& arg7, const RooCmdArg& arg8) const
// Create a new RooPlot on the heap with a drawing frame initialized for this
// object, but no plot contents. Use x.frame() as the first argument to a
// y.plotOn(...) method, for example. The caller is responsible for deleting
// the returned object.
//
// This function takes the following named arguments
//
// Range(double lo, double hi) -- Make plot frame for the specified range
// Range(const char* name) -- Make plot frame for range with the specified name
// Bins(Int_t nbins) -- Set default binning for datasets to specified number of bins
// AutoRange(const RooAbsData& data, -- Specifies range so that all points in given data set fit
// AutoSymRange(const RooAbsData& data, -- Specifies range so that all points in given data set fit
// double margin) inside the range and center of range coincides with mean
// of distribution in given dataset.
// Name(const char* name) -- Give specified name to RooPlot object
// Title(const char* title) -- Give specified title to RooPlot object
//
{
RooLinkedList cmdList ;
cmdList.Add(const_cast<RooCmdArg*>(&arg1)) ; cmdList.Add(const_cast<RooCmdArg*>(&arg2)) ;
cmdList.Add(const_cast<RooCmdArg*>(&arg3)) ; cmdList.Add(const_cast<RooCmdArg*>(&arg4)) ;
cmdList.Add(const_cast<RooCmdArg*>(&arg5)) ; cmdList.Add(const_cast<RooCmdArg*>(&arg6)) ;
cmdList.Add(const_cast<RooCmdArg*>(&arg7)) ; cmdList.Add(const_cast<RooCmdArg*>(&arg8)) ;
return frame(cmdList) ;
}
RooPlot* RooAbsRealLValue::frame(const RooLinkedList& cmdList) const {
// Define configuration for this method
RooCmdConfig pc(Form("RooAbsRealLValue::frame(%s)",GetName())) ;
pc.defineDouble("min","Range",0,getMin()) ;
pc.defineDouble("max","Range",1,getMax()) ;
pc.defineInt("nbins","Bins",0,getBins()) ;
pc.defineString("rangeName","RangeWithName",0,"") ;
pc.defineString("name","Name",0,"") ;
pc.defineString("title","Title",0,"") ;
pc.defineMutex("Range","RangeWithName","AutoRange") ;
pc.defineObject("rangeData","AutoRange",0,0) ;
pc.defineDouble("rangeMargin","AutoRange",0,0.1) ;
pc.defineInt("rangeSym","AutoRange",0,0) ;
// Process & check varargs
pc.process(cmdList) ;
if (!pc.ok(kTRUE)) {
return 0 ;
}
// Extract values from named arguments
Double_t xmin,xmax ;
if (pc.hasProcessed("Range")) {
xmin = pc.getDouble("min") ;
xmax = pc.getDouble("max") ;
cout << "Found Range" << xmin << " " << xmax << endl ;
if (xmin==xmax) {
xmin = getMin() ;
xmax = getMax() ;
}
} else if (pc.hasProcessed("RangeWithName")) {
const char* rangeName=pc.getString("rangeName",0,kTRUE) ;
xmin = getMin(rangeName) ;
xmax = getMax(rangeName) ;
} else if (pc.hasProcessed("AutoRange")) {
RooTreeData* rangeData = static_cast<RooTreeData*>(pc.getObject("rangeData")) ;
rangeData->getRange((RooRealVar&)*this,xmin,xmax) ;
if (pc.getInt("rangeSym")==0) {
// Regular mode: range is from xmin to xmax with given extra margin
Double_t margin = pc.getDouble("rangeMargin")*(xmax-xmin) ;
xmin -= margin ;
xmax += margin ;
if (xmin<getMin()) xmin = getMin() ;
if (xmin>getMax()) xmax = getMax() ;
} else {
// Symmetric mode: range is centered at mean of distribution with enough width to include
// both lowest and highest point with margin
Double_t mean = rangeData->moment((RooRealVar&)*this,1) ;
Double_t delta = ((xmax-mean)>(mean-xmin)?(xmax-mean):(mean-xmin))*(1+pc.getDouble("rangeMargin")) ;
xmin = mean-delta ;
xmax = mean+delta ;
if (xmin<getMin()) xmin = getMin() ;
if (xmin>getMax()) xmax = getMax() ;
}
} else {
xmin = getMin() ;
xmax = getMax() ;
}
Int_t nbins = pc.getInt("nbins") ;
const char* name = pc.getString("name",0,kTRUE) ;
const char* title = pc.getString("title",0,kTRUE) ;
RooPlot* frame = new RooPlot(*this,xmin,xmax,nbins) ;
if (name) {
frame->SetName(name) ;
}
if (title) {
frame->SetTitle(title) ;
}
return frame ;
}
RooPlot *RooAbsRealLValue::frame(Double_t xlo, Double_t xhi, Int_t nbins) const {
// Create a new RooPlot on the heap with a drawing frame initialized for this
// object, but no plot contents. Use x.frame() as the first argument to a
// y.plotOn(...) method, for example. The caller is responsible for deleting
// the returned object.
return new RooPlot(*this,xlo,xhi,nbins);
}
RooPlot *RooAbsRealLValue::frame(Double_t xlo, Double_t xhi) const {
// Create a new RooPlot on the heap with a drawing frame initialized for this
// object, but no plot contents. Use x.frame() as the first argument to a
// y.plotOn(...) method, for example. The caller is responsible for deleting
// the returned object.
return new RooPlot(*this,xlo,xhi,getBins());
}
RooPlot *RooAbsRealLValue::frame(Int_t nbins) const {
// Create a new RooPlot on the heap with a drawing frame initialized for this
// object, but no plot contents. Use x.frame() as the first argument to a
// y.plotOn(...) method, for example. The caller is responsible for deleting
// the returned object.
//
// The current fit range may not be open ended or empty.
// Plot range of variable may not be infinite or empty
if (getMin()==getMax()) {
cout << "RooAbsRealLValue::frame(" << GetName() << ") ERROR: empty fit range, must specify plot range" << endl ;
return 0 ;
}
if (RooNumber::isInfinite(getMin())||RooNumber::isInfinite(getMax())) {
cout << "RooAbsRealLValue::frame(" << GetName() << ") ERROR: open ended fit range, must specify plot range" << endl ;
return 0 ;
}
return new RooPlot(*this,getMin(),getMax(),nbins);
}
RooPlot *RooAbsRealLValue::frame() const {
// Create a new RooPlot on the heap with a drawing frame initialized for this
// object, but no plot contents. Use x.frame() as the first argument to a
// y.plotOn(...) method, for example. The caller is responsible for deleting
// the returned object.
//
// The current fit range may not be open ended or empty.
// Plot range of variable may not be infinite or empty
if (getMin()==getMax()) {
cout << "RooAbsRealLValue::frame(" << GetName() << ") ERROR: empty fit range, must specify plot range" << endl ;
return 0 ;
}
if (RooNumber::isInfinite(getMin())||RooNumber::isInfinite(getMax())) {
cout << "RooAbsRealLValue::frame(" << GetName() << ") ERROR: open ended fit range, must specify plot range" << endl ;
return 0 ;
}
return new RooPlot(*this,getMin(),getMax(),getBins());
}
void RooAbsRealLValue::copyCache(const RooAbsArg* source)
{
// Copy cache of another RooAbsArg to our cache
RooAbsReal::copyCache(source) ;
setVal(_value) ; // force back-propagation
}
void RooAbsRealLValue::printToStream(ostream& os, PrintOption opt, TString indent) const {
// Print info about this object to the specified stream. In addition to the info
// from RooAbsReal::printToStream() we add:
//
// Verbose : fit range and error
RooAbsReal::printToStream(os,opt,indent);
if(opt >= Verbose) {
os << indent << "--- RooAbsRealLValue ---" << endl;
TString unit(_unit);
if(!unit.IsNull()) unit.Prepend(' ');
os << indent << " Fit range is [ ";
if(hasMin()) {
os << getMin() << unit << " , ";
}
else {
os << "-INF , ";
}
if(hasMax()) {
os << getMax() << unit << " ]" << endl;
}
else {
os << "+INF ]" << endl;
}
}
}
void RooAbsRealLValue::randomize() {
// Set a new value sampled from a uniform distribution over the fit range.
// Prints a warning and does nothing if the fit range is not finite.
if(hasMin() && hasMax()) {
Double_t range= getMax()-getMin();
setVal(getMin() + RooRandom::uniform()*range);
}
else {
cout << fName << "::" << ClassName() << ":randomize: fails with unbounded fit range" << endl;
}
}
void RooAbsRealLValue::setBin(Int_t ibin)
{
// Check range of plot bin index
if (ibin<0 || ibin>=numBins()) {
cout << "RooAbsRealLValue::setBin(" << GetName() << ") ERROR: bin index " << ibin
<< " is out of range (0," << getBins()-1 << ")" << endl ;
return ;
}
// Set value to center of requested bin
setVal(getBinning().binCenter(ibin)) ;
}
Bool_t RooAbsRealLValue::fitRangeOKForPlotting() const
{
// Check if fit range is usable as plot range, i.e. it is neither
// open ended, nor empty
return (hasMin() && hasMax() && (getMin()!=getMax())) ;
}
Bool_t RooAbsRealLValue::inRange(const char* name) const
{
// Check if current value is inside range with given name
return (getVal() >= getMin(name) && getVal() <= getMax(name)) ;
}
TH1* RooAbsRealLValue::createHistogram(const char *name, const RooCmdArg& arg1, const RooCmdArg& arg2,
const RooCmdArg& arg3, const RooCmdArg& arg4, const RooCmdArg& arg5,
const RooCmdArg& arg6, const RooCmdArg& arg7, const RooCmdArg& arg8) const
// Create an empty ROOT histogram TH1,TH2 or TH3 suitabe to store information represent by the RooAbsRealLValue
//
// This function accepts the following arguments
//
// name -- Name of the ROOT histogram
//
// Binning(const char* name) -- Apply binning with given name to x axis of histogram
// Binning(RooAbsBinning& binning) -- Apply specified binning to x axis of histogram
// Binning(double lo, double hi, int nbins) -- Apply specified binning to x axis of histogram
// ConditionalObservables(const RooArgSet& set) -- Do not normalized PDF over following observables when projecting PDF into histogram
//
// ZVar(const RooAbsRealLValue& var,...) -- Observable to be mapped on z axis of ROOT histogram
//
// The YVar() and ZVar() arguments can be supplied with optional Binning() arguments to control the binning of the Y and Z axes, e.g.
// createHistogram("histo",x,Binning(-1,1,20), YVar(y,Binning(-1,1,30)), ZVar(z,Binning("zbinning")))
//
// The caller takes ownership of the returned histogram
{
RooLinkedList l ;
l.Add((TObject*)&arg1) ; l.Add((TObject*)&arg2) ;
l.Add((TObject*)&arg3) ; l.Add((TObject*)&arg4) ;
l.Add((TObject*)&arg5) ; l.Add((TObject*)&arg6) ;
l.Add((TObject*)&arg7) ; l.Add((TObject*)&arg8) ;
return createHistogram(name,l) ;
}
TH1* RooAbsRealLValue::createHistogram(const char *name, const RooLinkedList& cmdList) const
{
// Create empty 1,2 or 3D histogram
// Arguments recognized
//
// YVar() -- RooRealVar defining Y dimension with optional range/binning
// ZVar() -- RooRealVar defining Z dimension with optional range/binning
// AxisLabel() -- Vertical axis label
// Binning() -- Range/Binning specification of X axis
// Define configuration for this method
RooCmdConfig pc(Form("RooAbsRealLValue::createHistogram(%s)",GetName())) ;
pc.defineObject("xbinning","Binning",0,0) ;
pc.defineString("xbinningName","BinningName",0,"") ;
pc.defineInt("nxbins","BinningSpec",0) ;
pc.defineDouble("xlo","BinningSpec",0,0) ;
pc.defineDouble("xhi","BinningSpec",1,0) ;
pc.defineObject("yvar","YVar",0,0) ;
pc.defineObject("ybinning","YVar::Binning",0,0) ;
pc.defineString("ybinningName","YVar::BinningName",0,"") ;
pc.defineInt("nybins","YVar::BinningSpec",0) ;
pc.defineDouble("ylo","YVar::BinningSpec",0,0) ;
pc.defineDouble("yhi","YVar::BinningSpec",1,0) ;
pc.defineObject("zvar","ZVar",0,0) ;
pc.defineObject("zbinning","ZVar::Binning",0,0) ;
pc.defineString("zbinningName","ZVar::BinningName",0,"") ;
pc.defineInt("nzbins","ZVar::BinningSpec",0) ;
pc.defineDouble("zlo","ZVar::BinningSpec",0,0) ;
pc.defineDouble("zhi","ZVar::BinningSpec",1,0) ;
pc.defineString("axisLabel","AxisLabel",0,"Events") ;
pc.defineDependency("ZVar","YVar") ;
// Process & check varargs
pc.process(cmdList) ;
if (!pc.ok(kTRUE)) {
return 0 ;
}
// Initialize arrays for call to implementation version of createHistogram
const char* axisLabel = pc.getString("axisLabel") ;
const RooAbsBinning* binning[3] ;
RooArgList vars ;
// Prepare X dimension
vars.add(*this) ;
if (pc.hasProcessed("Binning")) {
binning[0] = static_cast<RooAbsBinning*>(pc.getObject("xbinning")) ;
} else if (pc.hasProcessed("BinningName")) {
binning[0] = &getBinning(pc.getString("xbinningName",0,kTRUE)) ;
} else if (pc.hasProcessed("BinningSpec")) {
Double_t xlo = pc.getDouble("xlo") ;
Double_t xhi = pc.getDouble("xhi") ;
binning[0] = new RooUniformBinning((xlo==xhi)?getMin():xlo,(xlo==xhi)?getMax():xhi,pc.getInt("nxbins")) ;
} else {
binning[0] = &getBinning() ;
}
if (pc.hasProcessed("YVar")) {
RooAbsRealLValue& yvar = *static_cast<RooAbsRealLValue*>(pc.getObject("yvar")) ;
vars.add(yvar) ;
if (pc.hasProcessed("YVar::Binning")) {
binning[1] = static_cast<RooAbsBinning*>(pc.getObject("ybinning")) ;
} else if (pc.hasProcessed("YVar::BinningName")) {
binning[1] = &yvar.getBinning(pc.getString("ybinningName",0,kTRUE)) ;
} else if (pc.hasProcessed("YVar::BinningSpec")) {
Double_t ylo = pc.getDouble("ylo") ;
Double_t yhi = pc.getDouble("yhi") ;
binning[1] = new RooUniformBinning((ylo==yhi)?yvar.getMin():ylo,(ylo==yhi)?yvar.getMax():yhi,pc.getInt("nybins")) ;
} else {
yvar.Print() ;
binning[1] = &yvar.getBinning() ;
}
}
if (pc.hasProcessed("ZVar")) {
RooAbsRealLValue& zvar = *static_cast<RooAbsRealLValue*>(pc.getObject("zvar")) ;
vars.add(zvar) ;
if (pc.hasProcessed("ZVar::Binning")) {
binning[2] = static_cast<RooAbsBinning*>(pc.getObject("zbinning")) ;
} else if (pc.hasProcessed("ZVar::BinningName")) {
binning[2] = &zvar.getBinning(pc.getString("zbinningName",0,kTRUE)) ;
} else if (pc.hasProcessed("ZVar::BinningSpec")) {
Double_t zlo = pc.getDouble("zlo") ;
Double_t zhi = pc.getDouble("zhi") ;
binning[2] = new RooUniformBinning((zlo==zhi)?zvar.getMin():zlo,(zlo==zhi)?zvar.getMax():zhi,pc.getInt("nzbins")) ;
} else {
binning[2] = &zvar.getBinning() ;
}
}
return createHistogram(name, vars, axisLabel, binning) ;
}
TH1F *RooAbsRealLValue::createHistogram(const char *name, const char *yAxisLabel) const {
// Create an empty 1D-histogram with appropriate scale and labels for this variable.
// This method uses the default plot range which can be changed using the
// setPlotMin(),setPlotMax() methods, and the default binning which can be
// changed with setPlotBins(). The caller takes ownership of the returned
// object and is responsible for deleting it.
// Check if the fit range is usable as plot range
if (!fitRangeOKForPlotting()) {
cout << "RooAbsRealLValue::createHistogram(" << GetName()
<< ") ERROR: fit range empty or open ended, must explicitly specify range" << endl ;
return 0 ;
}
RooArgList list(*this) ;
Double_t xlo = getMin() ;
Double_t xhi = getMax() ;
Int_t nbins = getBins() ;
return (TH1F*)createHistogram(name, list, yAxisLabel, &xlo, &xhi, &nbins);
}
TH1F *RooAbsRealLValue::createHistogram(const char *name, const char *yAxisLabel, Double_t xlo, Double_t xhi, Int_t nBins) const {
// Create an empty 1D-histogram with appropriate scale and labels for this variable.
// This method uses the default plot range which can be changed using the
// setPlotMin(),setPlotMax() methods, and the default binning which can be
// changed with setPlotBins(). The caller takes ownership of the returned
// object and is responsible for deleting it.
RooArgList list(*this) ;
return (TH1F*)createHistogram(name, list, yAxisLabel, &xlo, &xhi, &nBins);
}
TH1F *RooAbsRealLValue::createHistogram(const char *name, const char *yAxisLabel, const RooAbsBinning& bins) const {
// Create an empty 1D-histogram with appropriate scale and labels for this variable.
RooArgList list(*this) ;
const RooAbsBinning* pbins = &bins ;
return (TH1F*)createHistogram(name, list, yAxisLabel, &pbins);
}
TH2F *RooAbsRealLValue::createHistogram(const char *name, const RooAbsRealLValue &yvar, const char *zAxisLabel,
Double_t* xlo, Double_t* xhi, Int_t* nBins) const {
// Create an empty 2D-histogram with appropriate scale and labels for this variable (x)
// and the specified y variable. This method uses the default plot ranges for x and y which
// can be changed using the setPlotMin(),setPlotMax() methods, and the default binning which
// can be changed with setPlotBins(). The caller takes ownership of the returned object
// and is responsible for deleting it.
if ((!xlo && xhi) || (xlo && !xhi)) {
cout << "RooAbsRealLValue::createHistogram(" << GetName()
<< ") ERROR must specify either no range, or both limits" << endl ;
return 0 ;
}
Double_t xlo_fit[2] ;
Double_t xhi_fit[2] ;
Int_t nbins_fit[2] ;
Double_t *xlo2 = xlo;
Double_t *xhi2 = xhi;
Int_t *nBins2 = nBins;
if (!xlo2) {
if (!fitRangeOKForPlotting()) {
cout << "RooAbsRealLValue::createHistogram(" << GetName()
<< ") ERROR: fit range empty or open ended, must explicitly specify range" << endl ;
return 0 ;
}
if (!yvar.fitRangeOKForPlotting()) {
cout << "RooAbsRealLValue::createHistogram(" << GetName()
<< ") ERROR: fit range of " << yvar.GetName() << " empty or open ended, must explicitly specify range" << endl ;
return 0 ;
}
xlo_fit[0] = getMin() ;
xhi_fit[0] = getMax() ;
xlo_fit[1] = yvar.getMin() ;
xhi_fit[1] = yvar.getMax() ;
xlo2 = xlo_fit ;
xhi2 = xhi_fit ;
}
if (!nBins2) {
nbins_fit[0] = getBins() ;
nbins_fit[1] = yvar.getBins() ;
nBins2 = nbins_fit ;
}
RooArgList list(*this,yvar) ;
return (TH2F*)createHistogram(name, list, zAxisLabel, xlo2, xhi2, nBins2);
}
TH2F *RooAbsRealLValue::createHistogram(const char *name, const RooAbsRealLValue &yvar, const char *zAxisLabel, const RooAbsBinning** bins) const {
// Create an empty 2D-histogram with appropriate scale and labels for this variable (x)
// and the specified y variable.
RooArgList list(*this,yvar) ;
return (TH2F*)createHistogram(name, list, zAxisLabel, bins);
}
TH3F *RooAbsRealLValue::createHistogram(const char *name, const RooAbsRealLValue &yvar, const RooAbsRealLValue &zvar,
const char *tAxisLabel, Double_t* xlo, Double_t* xhi, Int_t* nBins) const {
// Create an empty 3D-histogram with appropriate scale and labels for this variable (x)
// and the specified y,z variables. This method uses the default plot ranges for x,y,z which
// can be changed using the setPlotMin(),setPlotMax() methods, and the default binning which
// can be changed with setPlotBins(). The caller takes ownership of the returned object
// and is responsible for deleting it.
if ((!xlo && xhi) || (xlo && !xhi)) {
cout << "RooAbsRealLValue::createHistogram(" << GetName()
<< ") ERROR must specify either no range, or both limits" << endl ;
return 0 ;
}
Double_t xlo_fit[3] ;
Double_t xhi_fit[3] ;
Int_t nbins_fit[3] ;
Double_t *xlo2 = xlo;
Double_t *xhi2 = xhi;
Int_t* nBins2 = nBins;
if (!xlo2) {
if (!fitRangeOKForPlotting()) {
cout << "RooAbsRealLValue::createHistogram(" << GetName()
<< ") ERROR: fit range empty or open ended, must explicitly specify range" << endl ;
return 0 ;
}
if (!yvar.fitRangeOKForPlotting()) {
cout << "RooAbsRealLValue::createHistogram(" << GetName()
<< ") ERROR: fit range of " << yvar.GetName() << " empty or open ended, must explicitly specify range" << endl ;
return 0 ;
}
if (!zvar.fitRangeOKForPlotting()) {
cout << "RooAbsRealLValue::createHistogram(" << GetName()
<< ") ERROR: fit range of " << zvar.GetName() << " empty or open ended, must explicitly specify range" << endl ;
return 0 ;
}
xlo_fit[0] = getMin() ;
xhi_fit[0] = getMax() ;
xlo_fit[1] = yvar.getMin() ;
xhi_fit[1] = yvar.getMax() ;
xlo_fit[2] = zvar.getMin() ;
xhi_fit[2] = zvar.getMax() ;
xlo2 = xlo_fit ;
xhi2 = xhi_fit ;
}
if (!nBins2) {
nbins_fit[0] = getBins() ;
nbins_fit[1] = yvar.getBins() ;
nbins_fit[2] = zvar.getBins() ;
nBins2 = nbins_fit ;
}
RooArgList list(*this,yvar,zvar) ;
return (TH3F*)createHistogram(name, list, tAxisLabel, xlo2, xhi2, nBins2);
}
TH3F *RooAbsRealLValue::createHistogram(const char *name, const RooAbsRealLValue &yvar, const RooAbsRealLValue &zvar,
const char* tAxisLabel, const RooAbsBinning** bins) const {
// Create an empty 3D-histogram with appropriate scale and labels for this variable (x)
// and the specified y,z variables.
RooArgList list(*this,yvar,zvar) ;
return (TH3F*)createHistogram(name, list, tAxisLabel, bins);
}
TH1 *RooAbsRealLValue::createHistogram(const char *name, RooArgList &vars, const char *tAxisLabel, Double_t* xlo, Double_t* xhi, Int_t* nBins)
{
const RooAbsBinning* bin[3] ;
Int_t ndim = vars.getSize() ;
bin[0] = new RooUniformBinning(xlo[0],xhi[0],nBins[0]) ;
bin[1] = (ndim>1) ? new RooUniformBinning(xlo[1],xhi[1],nBins[1]) : 0 ;
bin[2] = (ndim>2) ? new RooUniformBinning(xlo[2],xhi[2],nBins[2]) : 0 ;
TH1* ret = createHistogram(name,vars,tAxisLabel,bin) ;
if (bin[0]) delete bin[0] ;
if (bin[1]) delete bin[1] ;
if (bin[2]) delete bin[2] ;
return ret ;
}
TH1 *RooAbsRealLValue::createHistogram(const char *name, RooArgList &vars, const char *tAxisLabel, const RooAbsBinning** bins)
{
// Create a 1,2, or 3D-histogram with appropriate scale and labels.
// Binning and ranges are taken from the variables themselves and can be changed by
// calling their setPlotMin/Max() and setPlotBins() methods. A histogram can be filled
// using RooAbsReal::fillHistogram() or RooTreeData::fillHistogram().
// The caller takes ownership of the returned object and is responsible for deleting it.
// Check that we have 1-3 vars
Int_t dim= vars.getSize();
if(dim < 1 || dim > 3) {
cout << "RooAbsReal::createHistogram: dimension not supported: " << dim << endl;
return 0;
}
// Check that all variables are AbsReals and prepare a name of the form <name>_<var1>_...
TString histName(name);
histName.Append("_");
const RooAbsRealLValue *xyz[3];
Int_t index;
for(index= 0; index < dim; index++) {
const RooAbsArg *arg= vars.at(index);
xyz[index]= dynamic_cast<const RooAbsRealLValue*>(arg);
if(!xyz[index]) {
cout << "RooAbsRealLValue::createHistogram: variable is not real lvalue: " << arg->GetName() << endl;
return 0;
}
histName.Append("_");
histName.Append(arg->GetName());
}
TString histTitle(histName);
histTitle.Prepend("Histogram of ");
// Create the histogram
TH1 *histogram = 0;
switch(dim) {
case 1:
histogram= new TH1F(histName.Data(), histTitle.Data(),
bins[0]->numBins(),bins[0]->array());
break;
case 2:
histogram= new TH2F(histName.Data(), histTitle.Data(),
bins[0]->numBins(),bins[0]->array(),
bins[1]->numBins(),bins[1]->array());
break;
case 3:
histogram= new TH3F(histName.Data(), histTitle.Data(),
bins[0]->numBins(),bins[0]->array(),
bins[1]->numBins(),bins[1]->array(),
bins[2]->numBins(),bins[2]->array());
break;
default:
assert(0);
break;
}
if(!histogram) {
cout << "RooAbsReal::createHistogram: unable to create a new histogram" << endl;
return 0;
}
// Set the histogram coordinate axis labels from the titles of each variable, adding units if necessary.
for(index= 0; index < dim; index++) {
TString axisTitle(xyz[index]->getTitle(kTRUE));
switch(index) {
case 0:
histogram->SetXTitle(axisTitle.Data());
break;
case 1:
histogram->SetYTitle(axisTitle.Data());
break;
case 2:
histogram->SetZTitle(axisTitle.Data());
break;
default:
assert(0);
break;
}
}
// Set the t-axis title if given one
if((0 != tAxisLabel) && (0 != strlen(tAxisLabel))) {
TString axisTitle(tAxisLabel);
axisTitle.Append(" / ( ");
for(Int_t index= 0; index < dim; index++) {
Double_t delta= bins[index]->averageBinWidth() ; // xyz[index]->getBins();
if(index > 0) axisTitle.Append(" x ");
axisTitle.Append(Form("%g",delta));
if(strlen(xyz[index]->getUnit())) {
axisTitle.Append(" ");
axisTitle.Append(xyz[index]->getUnit());
}
}
axisTitle.Append(" )");
switch(dim) {
case 1:
histogram->SetYTitle(axisTitle.Data());
break;
case 2:
histogram->SetZTitle(axisTitle.Data());
break;
case 3:
// not supported in TH1
break;
default:
assert(0);
break;
}
}
return histogram;
}
Double_t RooAbsRealLValue::getFitMin() const
{
cout << "WARNING getFitMin() IS OBSOLETE, PLEASE USE getMin()" << endl ;
return getMin() ;
}
Double_t RooAbsRealLValue::getFitMax() const
{
cout << "WARNING getFitMax() IS OBSOLETE, PLEASE USE getMax()" << endl ;
return getMax() ;
}
Bool_t RooAbsRealLValue::hasFitMin() const
{
cout << "WARNING hasFitMin() IS OBSOLETE, PLEASE USE hasMin()" << endl ;
return hasMin() ;
}
Bool_t RooAbsRealLValue::hasFitMax() const
{
cout << "WARNING hasFitMax() IS OBSOLETE, PLEASE USE hasMax()" << endl ;
return hasMax() ;
}
Int_t RooAbsRealLValue::getFitBins() const
{
cout << "WARNING getFitBins() IS OBSOLETE, PLEASE USE getBins()" << endl ;
return hasMax() ;
}
Int_t RooAbsRealLValue::numFitBins() const
{
cout << "WARNING numFitBins() IS OBSOLETE, PLEASE USE numBins()" << endl ;
return hasMax() ;
}
Bool_t RooAbsRealLValue::isJacobianOK(const RooArgSet&) const
{
return kTRUE ;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.