Neural Network Multi Layer Perceptron
void mlpHiggs(Int_t ntrain=100) {
// For a LEP search for invisible Higgs boson, a neural network
// was used to separate the signal from the background passing
// some selection cuts. Here is a simplified version of this network,
// taking into account only WW events.
// Author: Christophe Delaere
if (!gROOT->GetClass("TMultiLayerPerceptron")) {
gSystem->Load("libMLP");
}
// Prepare inputs
// The 2 trees are merged into one, and a "type" branch,
// equal to 1 for the signal and 0 for the background is added.
TFile input("mlpHiggs.root");
TTree *signal = (TTree *) input.Get("sig_filtered");
TTree *background = (TTree *) input.Get("bg_filtered");
TTree *simu = new TTree("MonteCarlo", "Filtered Monte Carlo Events");
Float_t ptsumf, qelep, nch, msumf, minvis, acopl, acolin;
Int_t type;
signal->SetBranchAddress("ptsumf", &ptsumf);
signal->SetBranchAddress("qelep", &qelep);
signal->SetBranchAddress("nch", &nch);
signal->SetBranchAddress("msumf", &msumf);
signal->SetBranchAddress("minvis", &minvis);
signal->SetBranchAddress("acopl", &acopl);
signal->SetBranchAddress("acolin", &acolin);
background->SetBranchAddress("ptsumf", &ptsumf);
background->SetBranchAddress("qelep", &qelep);
background->SetBranchAddress("nch", &nch);
background->SetBranchAddress("msumf", &msumf);
background->SetBranchAddress("minvis", &minvis);
background->SetBranchAddress("acopl", &acopl);
background->SetBranchAddress("acolin", &acolin);
simu->Branch("ptsumf", &ptsumf, "ptsumf/F");
simu->Branch("qelep", &qelep, "qelep/F");
simu->Branch("nch", &nch, "nch/F");
simu->Branch("msumf", &msumf, "msumf/F");
simu->Branch("minvis", &minvis, "minvis/F");
simu->Branch("acopl", &acopl, "acopl/F");
simu->Branch("acolin", &acolin, "acolin/F");
simu->Branch("type", &type, "type/I");
type = 1;
Int_t i;
for (i = 0; i < signal->GetEntries(); i++) {
signal->GetEntry(i);
simu->Fill();
}
type = 0;
for (i = 0; i < background->GetEntries(); i++) {
background->GetEntry(i);
simu->Fill();
}
// Build and train the NN ptsumf is used as a weight since we are primarly
// interested by high pt events.
// The datasets used here are the same as the default ones.
TMultiLayerPerceptron *mlp = new TMultiLayerPerceptron("msumf,ptsumf,acolin:5:3:type",
"ptsumf",simu,"Entry$%2","Entry$/2");
mlp->Train(ntrain, "text,graph,update=10");
// Use TMLPAnalyzer to see what it looks for
TCanvas* mlpa_canvas = new TCanvas("mlpa_canvas","Network analysis");
mlpa_canvas->Divide(2,2);
TMLPAnalyzer ana(mlp);
// Initialisation
ana.GatherInformations();
// output to the console
ana.CheckNetwork();
mlpa_canvas->cd(1);
// shows how each variable influences the network
ana.DrawDInputs();
mlpa_canvas->cd(2);
// shows the network structure
mlp->Draw();
mlpa_canvas->cd(3);
// draws the resulting network
ana.DrawNetwork(0,"type==1","type==0");
mlpa_canvas->cd(4);
// Use the NN to plot the results for each sample
// This will give approx. the same result as DrawNetwork.
// All entries are used, while DrawNetwork focuses on
// the test sample. Also the xaxis range is manually set.
TH1F *bg = new TH1F("bgh", "NN output", 50, -.5, 1.5);
TH1F *sig = new TH1F("sigh", "NN output", 50, -.5, 1.5);
bg->SetDirectory(0);
sig->SetDirectory(0);
Double_t params[4];
for (i = 0; i < background->GetEntries(); i++) {
background->GetEntry(i);
params[0] = msumf;
params[1] = ptsumf;
params[2] = acolin;
params[3] = acopl;
bg->Fill(mlp->Evaluate(0, params));
}
for (i = 0; i < signal->GetEntries(); i++) {
signal->GetEntry(i);
params[0] = msumf;
params[1] = ptsumf;
params[2] = acolin;
params[3] = acopl;
sig->Fill(mlp->Evaluate(0,params));
}
bg->SetLineColor(kBlue);
bg->SetFillStyle(3008); bg->SetFillColor(kBlue);
sig->SetLineColor(kRed);
sig->SetFillStyle(3003); sig->SetFillColor(kRed);
bg->SetStats(0);
sig->SetStats(0);
bg->Draw();
sig->Draw("same");
TLegend *legend = new TLegend(.75, .80, .95, .95);
legend->AddEntry(bg, "Background (WW)");
legend->AddEntry(sig, "Signal (Higgs)");
legend->Draw();
mlpa_canvas->cd(0);
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.